
Distributed Filaments: Efficient Fine-Grain Parallelism on a Cluster of
Workstations ∗

Vincent W. Freeh, David K. Lowenthal, Gregory R. Andrews
{vin,dkl,greg}@cs.arizona.edu

Department of Computer Science
University of Arizona

Tucson, AZ 85721

Abstract

A fine-grain parallel program is one in which processes are
typically small, ranging from a few to a few hundred in-
structions. Fine-grain parallelism arises naturally in many
situations, such as iterative grid computations, recursive
fork/join programs, the bodies of parallel FOR loops, and
the implicit parallelism in functional or dataflow languages.
It is useful both to describe massively parallel computations
and as a target for code generation by compilers. How-
ever, fine-grain parallelism has long been thought to be
inefficient due to the overheads of process creation, con-
text switching, and synchronization. This paper describes
a software kernel, Distributed Filaments (DF), that imple-
ments fine-grain parallelism both portably and efficiently
on a workstation cluster. DF runs on existing, off-the-
shelf hardware and software. It has a simple interface, so
it is easy to use. DF achieves efficiency by using state-
less threads on each node, overlapping communication and
computation, employing a new reliable datagram commu-
nication protocol, and automatically balancing the work
generated by fork/join computations.

1 Introduction

One way to write a program for a parallel machine is to cre-
ate a process (thread) for each independent unit of work.
Although generally thought to be inefficient, such fine-
grain programs have several advantages. First, they are

∗This research was supported by NSF grants CCR-9108412 and CDA-
8822652

architecture independent in the sense that the parallelism
is expressed in terms of the application and problem size,
not in terms of the number of processors that might actually
be used to execute the program. This also makes fine-grain
programs easier to write, because it is not necessary to clus-
ter independent units of work into a fixed set of larger tasks;
indeed, adaptive programs such as divide-and-conquer al-
gorithms do not have an a priori fixed set of tasks. Third,
the implicit parallelism in functional or dataflow languages
is inherently fine-grain, as is the inner-loop parallelism ex-
tracted by parallelizing compilers or expressed in paral-
lel variants of languages such as Fortran; using fine-grain
threads simplifies code generation for such languages. Fi-
nally, when there are many more processes than proces-
sors, it is often easier to balance the total amount of work
done by each processor; in a coarse-grain program, it is im-
portant that each processor be statically assigned about the
same amount of work, but this is impossible if the com-
putation is dynamic or if the amount of work per process
varies.

We have developed a software kernel called Filaments
that strives to support efficient execution of fine-grain par-
allelism and a shared-memory programming model on a
range of multiprocessors. A filament is a very lightweight
thread. Each filament can be quite small, as in the computa-
tion of an average in Jacobi iteration; medium size, as in the
computation of an inner product in matrix multiplication;
or large, as in a coarse-grain program with a process per
processor. The Filaments package provides a minimal set
of primitives that we have found sufficient to implement all
the parallel computations we have examined so far. As an
analogy, the goal of Filaments relative to other approaches
to writing parallel programs is similar to the goal of RISC
relative to other styles of processor architecture: to provide
a least common denominator that is easy to use as a com-
piler target and that is efficiently implementable.

Previous work has described the Shared Filaments (SF)
package for shared-memory multiprocessors [EAL93]. We
have used SF as a system-call library for a variety of ap-
plications; performance using SF is typically within 10%



Filaments

Packet Protocol

Unix Operating System

Distributed Shared Memory
Distributed

Filaments

Application Code Plus Filaments Calls

Figure 1: Distributed Filaments Components

of that of equivalent coarse-grain programs, and it is some-
times even better (for load-imbalanced problems). We have
also used SF as the back end for a modified Sisal compiler,
thereby achieving efficient forall and function-call paral-
lelism in a dataflow language [Fre94].

This paper addresses the issue of providing portable, ef-
ficient fine-grain parallelism on a cluster of workstations.
Distributed Filaments (DF) extends SF and combines it
with a distributed shared memory (DSM) customized for
use with fine-grain threads. Figure 1 shows the compo-
nents of DF and their inter-relation. The unique aspects of
DF are:

• a multi-threaded DSM that implicitly overlaps com-
munication and computation by executing new fila-
ments while page faults are being serviced;

• a new page consistency protocol, implicit invalidate,
for regular problems;

• a low overhead, reliable, datagram communication
package, and

• an efficient implementation of the fork/join program-
ming paradigm.

DF requires no special hardware support for a shared-
memory address space or for multithreading. In addition,
the only machine-dependent code in DF is a very small
amount of context-switching code; hence, DF can easily
be ported to different distributed-memory architectures (see
below).

DF uses multithreading to overlap communication and
computation, thereby masking communication latency due
to “wire” and memory-access (DMA) time. In particular,
when a thread faults on a page, another thread can execute
while the page request is still outstanding. In this way DF
differs from DSMs such as IVY [LH89], Munin [CBZ91],
Mirage [FP89], and Midway [BZS93], where a page fault

blocks the entire node. (VISA [HB92], a DSM specifically
supporting distributed SISAL programs, does some over-
lapping of computation and communication, but VISA’s
stack-based nature limits the overlap relative to the mul-
tithreading of DF.) Overlapping communication and com-
putation is useful on both older (e.g. Ethernet) and newer
(e.g. FDDI, ATM) network technologies. While FDDI and
ATM provide higher bandwidth than Ethernet, there is still
sufficient latency to make overlapping beneficial [TL93].

DF also uses a reliable datagram protocol built on UDP
to reduce communication overhead. Our protocol buffers
only short request messages, saving both time and space.
This protocol provides reliable communication with the ef-
ficiency and scalability of UDP.

Another unique aspect of DF is its fork/join mecha-
nism, which makes DF much easier to use for recursive
applications. For adaptive quadrature and evaluating bi-
nary expression trees, for example, the simplest way to
implement parallelism is to execute recursive procedure
calls in parallel. However, it can be difficult to implement
fork/join efficiently, because recursive parallelism can re-
sult in many small tasks, numerous messages to commu-
nicate arguments and results, and differing task workloads.
DF solves each of these problems.

Distributed Filaments runs on a cluster of Sun worksta-
tions on top of SunOS; prototypes run on a cluster of DEC-
stations running Mach and on an Intel Paragon running
OSF. Performance on the Suns is such that an eight node
version of Jacobi iteration—which has a large number of
very small threads, and thus is a worst-case application—
is within 8% of an equivalent coarse-grain program that
uses explicit message-passing. DF achieves a speedup of
5.58 on 8 nodes relative to the sequential program. More-
over, overlapping communication and computation results
in a 21% improvement over the equivalent non-overlapping
program.

The rest of the paper is organized as follows. The next



section gives an overview of the Filaments package. Sec-
tion 3 describes our multi-threaded DSM, the datagram
communication package, and the implicit-invalidate page
consistency protocol. Section 4 summarizes performance
results. Section 5 discusses related work. Finally, Section
6 gives concluding remarks.

2 Filaments Overview

The Filaments package supports fine-grain parallelism on
both shared- and distributed-memory machines. The same
user code (C plus Filaments calls) will run unchanged on
either type of machine. However, the run-time systems that
support the shared and distributed versions differ. Below
we first describe elements common to both implementa-
tions and then describe the important elements of the dis-
tributed version. (We will refer to the shared and distributed
implementations of Filaments as SF and DF, respectively.)

2.1 Common Elements

There are three kinds of filaments: run-to-completion, it-
erative, and fork/join. These are sufficient to support all
the parallel applications we have examined, and hence we
believe they are sufficient for most if not all applications.

A run-to-completion (RTC) filament executes once and
then terminates; it is used in applications such as matrix
multiplication. Iterative filaments execute repeatedly, with
barrier synchronization occurring after each execution of
all the filaments; they are used in applications such as Ja-
cobi iteration. Fork/join filaments recursively fork new fil-
aments and wait for them to complete; they are used in
divide-and-conquer applications such as adaptive quadra-
ture.

A filament does not have a private stack; it consists only
of a code pointer and arguments. All filaments are inde-
pendent; there is no guaranteed order of execution among
them. Filaments are executed one at a time by server
threads, which are traditional threads with stacks. Our
threads package is based on the one used in the SR run-time
system [AOC+88]. It is non-preemptive, and it employs a
scheduler written specifically for DF.

Many Filaments programs attain good performance with
little or no optimization. However, achieving good perfor-
mance for applications that possess many small filaments
requires three techniques: inlining, pruning, and pattern
recognition. These techniques reduce the cost of creating
and running filaments, reduce the working set size to make
more efficient use of the cache, and produce code that is
amenable to subsequent compiler optimizations of the Fil-
aments code.

Inlining and pruning eliminate some of the overhead as-
sociated with creating and running filaments. Static inlin-
ing is performed for RTC and iterative filaments. Instead
of calling the function specified by the filament each time,

the body is inlined in a loop over all filaments. Dynamic
pruning is performed for fork/join filaments. When enough
work has been created to keep all nodes busy, forks are
turned into procedure calls and joins into returns.

Inlining eliminates a function call, but DF still has to
traverse the list of filament descriptors to obtain the ar-
guments. The Filaments package can produce code that
is amenable to compiler optimizations, improves cache
performance, and eliminates additional overhead associ-
ated with running filaments. It does this by recognizing
common patterns of RTC and iterative filaments at run-
time. Currently, Filaments recognizes contiguous strips of
one- or two-dimensional arrays of filaments assigned to the
same node. For such strips of filaments the package dynam-
ically switches to code that iterates over the assigned strip,
generating the arguments in registers rather than reading
the filament descriptors. This optimization supports a large
subset of regular problems; we are working on supporting
other common patterns.

2.2 Run-to-Completion and Iterative Fila-
ments in DF

The possibility of a DSM page fault means filaments in DF
must be able to block at unpredictable points. Hence, DF
creates multiple server threads per node (as opposed to SF,
which creates one server thread per node). A server thread
runs filaments until either a page fault occurs or all eligi-
ble filaments have been executed. When a fault occurs,
the state of the filament is saved on the stack of its server
thread, and another server thread is executed. The faulting
server thread is inserted in a queue for the appropriate page.
On receipt of a page, all server threads waiting on that page
are enabled.

Two important issues arise with RTC filaments in DF:
avoiding excessive faulting and overlapping communica-
tion and computation as much as possible. DF provides
pools to address both issues.

A pool is a collection of filaments that ideally reference
the same set of pages. At creation time, the Filaments pro-
gram (user or compiler generated) assigns a filament to a
pool. When a program is started, a server thread on each
node starts executing a pool of filaments. On a page fault,
a new server thread is started; it executes filaments in a dif-
ferent pool while the remote page is being fetched. Thus,
an entire pool is suspended when any one of its filaments
faults. This minimizes page faults if filaments in the same
pool reference the same pages.

Iterative filaments are a generalization of RTC filaments.
For iterative applications, DF ensures that after the first iter-
ation the pools that are run first will be those that faulted on
the previous iteration; i.e., the faults are frontloaded, which
increases the potential for overlap of communication and
computation. This is a useful optimization, as many iter-
ative applications have constant sharing patterns. DF im-



0

1

2

3

4

4 4 4

4 4 4

4

3 3

32

Figure 2: Logical tree of 16 nodes, for applications that
create parallelism by the pattern of 2 forks and a join. At
each step, the number of nodes with work doubles. The
numbers in the figure indicates the step in which the node
first gets a filament.

plements this in the following way. On a page reply, the
enabled server threads are placed on the tail of the ready
queue. This ensures that pools containing at least one fila-
ment that faults will finish execution after a pool that con-
tains no filaments that fault, provided that the faulting pool
is started before the non-faulting pool. To make sure all
faulting pools are started first, when a server thread finishes
executing an entire pool of filaments, it pushes the pool on
a stack. On the next iteration, the pools are run starting at
the top of the stack, which ensures that all faulting pools
are run first. The combination of these two mechanisms ef-
fectively frontloads the faults, and the greatest overlap of
communication and computation will be achieved.1

At present, it is up to the programmer or compiler to de-
termine the number of pools on each node and to assign
filaments both to a node and to a pool on that node. Both of
these decisions can be nontrivial and have to be done well
or performance will suffer (although correctness will not).
The filaments should be assigned to nodes so that the load
is balanced, and the filaments within a node should be as-
signed to pools so that faults are minimized and good over-
lap of computation and communication is achieved. Deter-
mining the correct node and pool for filaments can lead to
some of the same difficulties that occur in writing a coarse-
grain program. We are currently working on adaptive algo-
rithms for making both of these decisions within DF at run
time.

1We have not found iterative applications that possess a sharing pattern
for which this algorithm is not optimal. However, if such an application
does exist, we can frontload the faults by running one filament from each
pool at the beginning of each iteration.

2.3 Fork/Join Filaments in DF

In recursive, fork/join applications, the computation starts
on just one node, and other nodes are idle. To get all nodes
involved in the computation, new work (from forks) needs
to be sent to idle nodes. Dynamic load balancing may then
be required to keep the nodes busy, because different nodes
can receive different amounts of work.

Load balancing can, however, have several negative ef-
fects. In DF, there are two significant ones. First, when
a node starts executing a filament, it needs to get the data
associated with the filament. At best this costs the time to
acquire the working set of the filament, and at worst it can
lead to thrashing. Second, the initial load-balancing phase
can be very costly, as all nodes other than the one that starts
the computation will either query other nodes with requests
for work (most of which will be denied) or flood the initial
node with requests (which can cause a bottleneck).

DF first uses a sender-initiated load-balancing scheme
and then employs a simple receiver-initiated, dynamic
load-balancing policy (which can be enabled and disabled
by the application programmer or compiler). Suppose that
a fork/join application creates parallelism by two forks and
then a join. The initial load-balancing phase then works as
follows. The nodes form a logical tree (see Figure 2). The
root begins the computation; after forking the first two fil-
aments, it sends one filament to its left child and keeps the
other. Both nodes continue the computation. When the root
forks another two filaments, it now sends one to its second
child and keeps the other; the next time it sends a new fila-
ment to its third child and keeps the other; and so on. Each
child node follows the same pattern. Consequently, in each
step the number of nodes with work doubles. The initial
phase continues in this way until a node has sent work to
all of its children, after which it keeps all filaments it forks.

After the initial work-distribution phase, some applica-
tions will need to employ dynamic load balancing; in DF
this is receiver initiated. When a node has no new filaments
and none that are suspended waiting for a page, it queries
other nodes in a round-robin fashion. For applications that
do not exhibit much load imbalance—such as evaluating
balanced binary expression trees, merge sort, or recursive
FFT—the cost of acquiring pages outweighs the gain of
load balancing. On the other hand, for applications such as
adaptive quadrature—where evaluating intervals can take
widely varying amounts of time—dynamic load balancing
is absolutely necessary.

Another concern in implementing fork/join is avoiding
thrashing, which can occur when two nodes write to the
same page. Fork/join in DF uses two mechanisms. The first
is similar to one used in the Mirage [FP89] system. A node
will keep a page for a certain length of time before giving
it up; during that time all requests for the page from other
nodes are dropped (they will be retransmitted later). The
Mirage timer can hurt system performance because it may
delay sending a requested page. However, this problem is



mitigated in Filaments by multithreading; if there is other
work, the delay of the request is insignificant. The second
mechanism used to control thrashing is that when a page
arrives, all server threads waiting on the page are scheduled
at the front of the ready queue. Hence the page that just
arrived will be utilized as soon as the currently executing
thread gives up control. This increases the probability that
the page is still resident by the time the enabled threads are
actually scheduled to run.

3 Distributed Shared Memory

Our multi-threaded distributed shared memory (DSM) is
built on top of SunOS and therefore requires no special-
ized hardware or changes to the operating system kernel.
In a single-threaded DSM implementation, all work on a
faulting node is suspended until the fault is satisfied. In a
multi-threaded implementation, other work is done while
the remote fault is pending. This makes it possible to over-
lap communication and computation.

The address space of each node contains both shared and
private sections. Shared user data (matrices, linked lists,
etc.) are stored in the shared section, while local user data
(program code, loop variables, etc.) and all system data
structures (queues, page tables, etc.) are stored in the pri-
vate sections. The shared section is replicated on all nodes
in the same location so that pointers into the shared space
have the same meaning on all nodes.

The shared address space is divided into individually
protected pages of 4K bytes each (this is the granularity
supported in SunOS). However, a user does not have to
use all of the locations in a page. In particular, user data
structures can be padded to distribute elements onto differ-
ent pages. We have written a library routine that allocates
a data structure in global memory and automatically pads
(when necessary). Additionally, two or more pages can be
grouped so that a request for any page in the group is a re-
quest for all of them. Thus our DSM supports pages that
can have different sizes than the pages directly supported
by the operating system.

There are two events in our DSM system: remote page
fault and message pending. A remote page fault is gener-
ated when a server thread tries to access a remote mem-
ory location. It is handled by using the mprotect system
call, which changes the access permission of pages, and by
using a signal handler for segmentation violations. A mes-
sage pending event is generated when a message arrives
at a node; it is handled by an asynchronous event handler
which is triggered by SIGIO.

When a filament accesses a remote page, the server
thread executing the filament is interrupted by a signal.
The signal handler inserts the faulted server thread in the
suspended queue for that page, requests the remote page
if necessary, and calls the scheduler, which will execute
another server thread. When the request is satisfied, the

faulted server thread is rescheduled, as are all other server
threads that are waiting on that page. Because a new server
thread is run after every page fault, the system can have
several outstanding page requests.

There are any number of page consistency protocols
(PCP) that could be implemented. We have found three
PCPs to be sufficient to support the wide range of appli-
cations we have programmed in DF: migratory [CBZ91],
write-invalidate [LH89], and a new protocol we call
implicit-invalidate. The migratory PCP keeps only one
copy of each page; the page moves from node to node
as needed. Write-invalidate allows replicated, read-only
copies; all are invalidated explicitly when any copy is writ-
ten. Implicit-invalidate is similar to write-invalidate, but it
is optimized to eliminate the invalidation messages. In par-
ticular, read-only copies of a page are implicitly invalidated
at every synchronization point. Hence a read-only copy
of a page has a very short lifetime and explicit invalidate
messages are not needed. Implicit-invalidate works only
for regular problems with a stable sharing pattern, such as
Jacobi iteration.

A DSM requires reliable communication, ideally with
low overhead. On a Unix system there are two communi-
cation choices: TCP and UDP. TCP is reliable, but it does
not scale well with the number of nodes; UDP is scalable,
but it is not reliable. UDP is also slightly faster than TCP,
and it supports message broadcast. Therefore we use UDP
and an efficient reliability protocol to create Packet, a low
overhead reliable datagram communication package.

In Packet there are two types of messages: request and
reply. Communication always occurs in pairs: first a re-
quest and then the associated reply. When either the re-
quest or reply message is lost or delayed, the request mes-
sage is retransmitted. All request messages are buffered;
however, they are very short (20 bytes or less), so buffering
consumes very little time and space. Packet is efficient be-
cause only small messages are buffered and, in the common
case, only two messages are sent. (Figure 3 shows the four
possible situations that can arise.) In an unreliable network
where a lost packet is a likely event, a different reliabil-
ity mechanism—such as the one in TCP—might perform
better than Packet. However, in a highly reliable network,
Packet adds essentially no additional overhead. In partic-
ular, the overhead consists of buffering request messages
and, when a reply is received, removing the message from
a list. The list is never longer than the number of messages
that are sent between synchronization points.

With Packet we avoid the expense of buffering DSM
page data. All page replies are constructed using the cur-
rent contents of the page. Nodes delay at synchronization
points until all outstanding page requests have been satis-
fied. Therefore, in a program without race conditions, a
page request always returns a consistent copy of a page.

Packet is similar to the VMTP protocol [CZ83], which
also does not buffer reply messages and retransmits re-



DroppedDropped

ReplierReplier Replier Replier

Time Out

Time Out

Time Out Time Out

Requester Requester Requester Requester

(a) No Problems (b) Request Lost (c) Reply Lost (d) Reply Delayed

Figure 3: Possible scenarios in Packet

quest messages only when necessary. However, there
is a fundamental difference: VMTP uses a synchronous
send/receive/reply, whereas Packet uses an asynchronous
send/receive/reply.

Because request messages are retransmitted until ac-
knowledged, we can implement a very efficient mutual ex-
clusion mechanism. When a server thread is in a critical
section, all messages that cause critical data (i.e., thread
queues) to be modified are ignored—they will be retrans-
mitted when the requester times out. (The servicing of
some messages, such as a page request, will never mod-
ify critical data.) The entry and exit protocols for a critical
section are simply a single assignment statement, so many,
very small critical sections can be used efficiently. Our ex-
perience shows that an ignored message is so rare that it
essentially never occurs.

A reduction in Filaments is a primitive that both (1)
causes a value from each node to be accumulated and then
disseminated to all nodes, and (2) ensures that no node con-
tinues until all nodes have completed the same reduction.
Hence, a reduction also serves as a barrier synchronization
point. (A “pure” barrier is a reduction that does not com-
pute a value.) A reduction is a high-level mechanism that
we have used in our application programs instead of low-
level mechanisms like locks. Reductions are not necessar-
ily a part of a DSM, although they are a necessary part of
a parallel programming system. Implementing reductions
as part of the DSM has the advantage that they can be an
integral part of the page consistency protocol (PCP). This
can reduce the number of messages required to maintain
consistency and allows greater flexibility in the design of
a PCP. For example, in our implicit-invalidate protocol, a
node invalidates all its read-only copies before performing
an inter-node barrier; hence, no invalidation messages are
sent.

4 Performance

This section reports the performance of four programs: ma-
trix multiplication, Jacobi iteration, adaptive quadrature,
and evaluation of binary expression trees. For each we
developed a sequential program, a coarse-grain program,

and a Filaments program. All programs use similar com-
putation code. The sequential programs are distinct from
the others—they are not simply a parallel program run on
one node. The coarse-grain (CG) programs have a sin-
gle heavy-weight process on each node and use explicit
message-passing. They use UDP for communication. The
times reported are those of the tests in which all messages
were delivered and the program completed; when a mes-
sage was lost, the program hung and the test was aborted.
All speedups are computed using the sequential program as
the baseline. In the graphs that follow, the ideal time is the
sequential time divided by the number of nodes.

Below, we briefly describe four applications, present the
results of runs on 1, 2, 4, and 8 nodes, and examine the
parallel speedup. In Section 4.5 we examine the overheads
of Filaments in detail. All tests were run on a network of
8 Sun IPCs connected by a 10Mbs Ethernet. We used the
gcc compiler, with the -O flag for optimization. The ex-
ecution times reported are the median of at least three test
runs, as reported by gettimeofday. The variance of the
test runs was small. The tests were performed when the
only other active processes were Unix daemons.

4.1 Matrix Multiplication

The execution times for matrix multiplication are shown
in Figure 4. The programs compute C = A × B, where
A, B, and C are n × n matrices. Each node computes
a horizontal contiguous strip of rows of the C matrix. A
master node initializes the matrices and distributes all of B
and the appropriate parts of A to the other nodes.

In the coarse-grain program, all slave nodes receive all
the data they need before starting their computation. The
distribution of the A and B matrices takes 5.1 seconds
in the 8 node program. This initial overhead limits the
speedup of the coarse-grain program.

The DF program for matrix multiplication uses run-to-
completion filaments, one per point of the C matrix, and
the write-invalidate PCP. Because there are no write con-
flicts in the C matrix, there is very little synchronization
overhead (two barriers, one to ensure the master node ini-
tializes A and B before other nodes start computing, and



0

50

100

150

200

1 2 4 8

Se
co

nd
s

Nodes

Matrix Multiplication

’Ideal’
’CG’
’DF’

Nodes 1 2 4 8

CG Time (sec) 205 104 53.3 30.1
CG Speedup 1.00 1.97 3.85 6.81

DF Time (sec) 206 107 64.8 39.7
DF Speedup 1.00 1.92 3.16 5.16

Figure 4: Matrix multiplication, size 512×512. Sequential
program: 205 sec.

one to ensure all nodes have computed their part of C be-
fore the master node prints it). However, in the problem
tested each matrix requires 512 pages of 4K bytes each. All
p−1 slave nodes must receive all of B and 1/p of A, so the
number of page requests is O(pn2) in the DF program. The
master node must service all these page requests. The over-
head to service 4032 page requests in the 8 node program
is approximately 6.2 seconds, and the network is saturated
by the large number of messages. This saturation results in
an increase in the latency of acquiring pages and leads to
workload imbalance. These factors explain the drop-off in
speedup on 4 and 8 nodes for the DF program.

4.2 Jacobi Iteration

Laplace’s equation in two dimensions is the partial differ-
ential equation �2(Φ) = 0. Given boundary values for
a region, its solution is the steady-state values of interior
points. These values can be approximated numerically by
using a finite difference method such as Jacobi iteration,
which repeatedly computes new values for each point, then
tests for convergence.

In Jacobi, one horizontal strip of each array is distributed
to each node. The nodes in the coarse-grain program re-
peatedly send edges, update interior points, receive edges,
update edges, and check for termination. In this way the
coarse-grain program achieves maximal overlap of com-
munication and computation.

The DF program uses iterative filaments—one per
point—and three pools of filaments—one each for the top
row, bottom row, and interior rows. Filaments in the top
and bottom pools fault, generating a page request; those in

0

50

100

150

200

1 2 4 8

Se
co

nd
s

Nodes

Jacobi Iteration

’Ideal’
’CG’
’DF’

Nodes 1 2 4 8

CG Time (sec) 215 98.1 53.1 35.8
CG Speedup 1.00 2.19 4.05 6.01

DF Time (sec) 212 102 59.8 38.5
DF Speedup 1.01 2.11 3.60 5.58

Figure 5: Jacobi iteration, 256 × 256, ε = 10−3, 360 itera-
tions. Sequential program: 215 sec.

the local pool do not fault. All communication latency will
be overlapped provided that the latency of acquiring pages
is less than the total execution time of filaments in the local
pool; the DF program achieves full overlap. A reduction is
needed on every iteration.

Figure 5 shows the main results of our Jacobi iteration
programs.2 The coarse-grain program gets better than lin-
ear speedup for 2 and 4 nodes (the primary reason is the
size of the working set and its effect on the cache, etc.
[SHG93]), and it gets reasonable speedup on 8 nodes. The
gain of overlapping communication and computation in the
coarse-grain program is 5.5% and 14% on 4 and 8 nodes,
respectively.

The DF program uses the implicit-invalidate PCP, which
eliminates invalidation messages. The speedup obtained is
3.60 on 4 nodes and 5.58 on 8 nodes. The running times
increase by 10% and 26% on 4 and 8 nodes, respectively,
if the communication latency is not overlapped.

4.3 Adaptive Quadrature

Adaptive quadrature is an algorithm to compute the area
under a curve defined by a continuous function. It works by
dividing an interval in half, approximating the areas of both
halves, and then subdividing further if the approximation is

2The DF program should not run faster than the sequential program,
but it does. Even though the C code for the computation of each point is
identical in all three programs, the compiler generates different assembler
code for DF than for the CG and sequential programs. The innermost
computation (the average) is slightly faster in DF than in the other two
programs. This anomaly, for which we have no explanation, also occurs
on some other test programs.



0

50

100

150

200

1 2 4 8

Se
co

nd
s

Nodes

Adaptive Quadrature

’Ideal’
’CG’
’DF’

Nodes 1 2 4 8

CG Time (sec) 203 137 133 118
CG Speedup 1.00 1.48 1.53 1.72

DF Time (sec) 210 119 59.0 35.7
DF Speedup 0.97 1.71 3.44 5.69

Figure 6: Adaptive quadrature, interval of length 24. Se-
quential program: 203 sec.

not good enough. The programs tested evaluate a curve that
causes workload imbalance.

Our coarse-grain approximation divides the interval into
p subintervals and assigns one to each node. However, this
can lead to severe load imbalance, as reflected in Figure 6.
A second program that uses a bag-of-tasks [CGL86] has
better speedup, but its absolute time is much worse. The
overhead of accessing the centralized bag is extremely high
due to the large number of small tasks. These coarse-grain
programs illustrate the need for a low-overhead, decentral-
ized load balancing mechanism.

The natural algorithm for this problem uses divide-
and-conquer, so our DF program uses fork/join filaments.
Speedups of 3.44 and 5.69 were obtained on four nodes
and eight nodes, respectively. The speedup tapers off as
the number of nodes increases because the two nodes eval-
uating the extreme intervals initially contain most of the
work. With eight nodes, six complete their initial work
quickly and make load-balancing requests. This not only
increases the number of messages but increases the likeli-
hood of a load-balance denial (because only two have suf-
ficient work).

4.4 Binary Expression Trees

The fork/join paradigm can also be used to compute the
value of a binary expression tree, an application described
in [EZ93]. The leaves are matrices and interior operators
are matrix multiplication; the tree is traversed in parallel
and the matrices are multiplied sequentially. Figure 7 con-
tains the results of running the matrix expression program
with 70 by 70 matrices and a balanced binary tree of height

0

20

40

60

80

100

1 2 4 8

Se
co

nd
s

Nodes

Binary Expression Trees

’Ideal’
’CG’
’DF’

Nodes 1 2 4 8

CG Time (sec) 90.7 47.9 25.4 14.1
CG Speedup 0.99 1.92 3.63 6.53

DF Time (sec) 92.2 54.0 28.1 17.5
DF Speedup 1.00 1.71 3.28 5.26

Figure 7: Binary expression tree evaluation, 70× 70 matri-
ces, tree of height 7. Sequential program: 92.1 sec.

7. The maximum possible speedup that can be achieved for
this application is limited by the tail-end load imbalance.
In particular, near the top of the tree some nodes must re-
main idle. However, because the work doubles with each
level of the tree, good speedup can still be achieved. For
the problem tested, the maximum speedup is 3.85 and 7.06
on 4 and 8 nodes, respectively.

The coarse-grain program contains two phases. In the
first, the program divides the work up evenly among the
nodes. The second phase combines the intermediate values
that each node calculated into a single result using a tree.
Tail-end load imbalance is handled in this last phase. Pro-
ceeding towards the top of the combining tree, half of the
active nodes become inactive at each level. There are very
few messages in this algorithm (a total of 2(p− 1) to trans-
fer result matrices in the combining tree). The overhead is
very low, so the speedup is very good.

This DF fork/join program uses the global (DSM) mem-
ory, unlike adaptive quadrature where all the information
is contained in the function parameters. The migratory
PCP is used, although in this particular application there
is no performance difference between migratory and write-
invalidate. The DF program sends many more messages
than the coarse-grain program because (1) the parallelism
begins from a single root filament and its children are dis-
tributed to the other nodes and (2) data is acquired implic-
itly by page faults (requiring a request and a reply).

4.5 Analysis of Overhead

DF introduces four categories of overheads relative to se-
quential programs: filaments execution, paging, synchro-



Nodes 2 4 8

Time (msec) 3.20 5.29 8.45

Figure 8: Barrier synchronization, 1000 barriers

Operation Time (µs) ops/sec
Filaments creation 2.10 457,000

Context switch
Filaments 0.643 1,560,000

Fil. Inlined 0.126 7,950,000
Threads 48.8 20,500

Page faults 4,120 238.

Figure 9: Filaments overheads

nization, and workload imbalance. Filaments execution
has the following costs: creating and running filaments,
more memory for filament descriptors (and therefore less
effective caching), and lost compiler optimizations. As dis-
cussed in Section 2.1, the Filaments package has support
for decreasing these costs. This support resulted in Fila-
ments execution overhead of less than 5% in all the test
programs.

The second source of DF overhead is due to DSM pag-
ing. The faulting node incurs the cost of faulting on the
page and sending and receiving the resulting messages.
The owner of the requested page incurs the cost of ser-
vicing the page request (receiving the request and sending
the page). The paging overhead per node is application-
dependent. In general it does not depend on the number of
nodes but on the sharing of data. However, even with a con-
stant paging overhead per node, the total number of mes-
sages in the system will increase linearly with the number
of nodes. This can be a problem when the network becomes
saturated, as is the case in Jacobi iteration on eight nodes.

The third DF overhead is due to synchronization, which
results from barriers (in RTC and iterative filaments)
or messages containing filaments and result values (in
fork/join filaments). The overhead of barriers is a function
of the number of nodes. DF uses a tournament barrier with
broadcast dissemination, which has O(p) messages and a
latency of O(log p) messages [HFM88]. Barrier synchro-
nization times are shown in Figure 8. This is the cost of
the barrier only; in an actual application it is likely that
the nodes arrive at the barrier at different times, which in-
creases the time a particular node is at the barrier. The bar-
rier time given includes message latency (wire time) as well
as message processing overhead. Communication latency
cannot be overlapped with computation during a barrier be-
cause a processor has no more work to do when it reaches
a barrier. Therefore, a barrier is an expensive operation.

The final DF overhead is a result of nodes having differ-
ing workloads. This can occur in two ways: either nodes
are given different amounts of work, or the work leads to

Node Master Interior Tail

Work 22.3 22.9-24.4 22.6
Filament Exec 1.57 1.54-1.87 1.73
Data Transfer 7.75 2.31-3.02 1.53

Sync Overhead 0.99 1.51-2.14 1.12
Sync Delay 6.62 5.24-10.3 14.7

Figure 10: Analysis of overheads in Jacobi iteration, 8
nodes, 256 × 256, ε = 10−3, 360 iterations. Total exe-
cution time 42.1 seconds.

different amounts of paging and synchronization overhead.
Differing workload results in nodes arriving at synchro-
nization points at different times and hence leads to uneven
and longer delays.

The coarse-grain programs also incur overheads due to
data transfer, synchronization, and workload imbalance.
The latter two overheads are roughly the same as DF; how-
ever, the data-transfer overhead is much less because the
coarse-grain programs use explicit messages to transfer
data.

Some of the filaments overheads are shown in Figure 9.
Each overhead is shown both as the time per operation and
as the number of operations per second. The cost of switch-
ing between filaments depends on whether or not they are
inlined. Inlining filaments eliminates a function call (and
return) and is more than five times faster than not inlin-
ing. For comparison purposes, context switch times for the
light-weight server threads are shown as well. The page
fault times assume the owner is known and the page is im-
mediately available.

Figure 10 shows DF overheads in the specific case of
Jacobi iteration. The nodes are split into three categories:
the master node, the interior nodes, and the tail node. The
master node and the tail node fault on one page and ser-
vice one page request per iteration. Interior nodes incur
two page faults and two page requests per iteration. In ad-
dition, the master node must service all the initial page re-
quests. The execution time in Figure 10 is divided among
five categories: work (the cost of the computation proper),
filaments overhead, data transfer (page faulting and servic-
ing), synchronization overhead (sending and receiving syn-
chronization messages), and synchronization delay (differ-
ing barrier arrival times). A range is given for the times
of the six interior nodes because of their different synchro-
nization delays. The overall time is longer than that pre-
viously reported because this test was run using profiled
code. Because the programs were started on each node in
succession, and the system initialization and termination
are included, the total time taken by each node in Figure 10
is not equal.

The Jacobi iteration times reported in section 4.2 take
advantage of two performance enhancements: the implicit-
invalidate page consistency protocol (PCP) and multiple
pools. The communication overhead is reduced by us-



Nodes 1 2 4 8

DF Time (sec) 212 103 61.4 40.9
DF Speedup 1.01 2.09 3.50 5.26

Figure 11: Jacobi iteration, Write-Invalidate PCP, 256 ×
256, ε = 10−3, 360 iterations. Sequential program: 215
sec.

Nodes 1 2 4 8

DF Time (sec) 212 104 65.5 48.5
DF Speedup 1.01 2.07 3.28 4.43

Figure 12: Jacobi iteration, Implicit-Invalidate PCP, single
pool, 256 × 256, ε = 10−3, 360 iterations. Sequential
program: 215 sec.

ing the implicit-invalidate PCP, which has fewer messages
than the write-invalidate PCP. The write-invalidate PCP re-
quires invalidate messages to be sent, received, and ac-
knowledged. The performance improvement, 3% and 6%
on 4 and 8 nodes, can be seen by comparing the results in
Figure 11 with those in Figure 5. The times for single-pool,
non-overlapping Jacobi iteration are shown in Figure 12.
Overlapping communication leads to a 9% and 21% im-
provement on 4 and 8 nodes, as can be seen by comparing
the times in Figure 12 with those in Figure 5.

5 Related Work

There is a wealth of related work on threads packages.
In general-purpose threads packages, such as uSystem
[BS90], each thread has its own context. Consequently,
the package has to perform a full context switch when it
switches between threads. (This is true even in threads
packages with optimizations such as those described in
[ALL89]). The overhead of context switching is significant
when threads execute a small number of instructions, as in
Jacobi iteration. Hence, general-purpose threads packages
are most useful for providing coarse-grain parallelism or
for structuring a large concurrent system.

A few threads packages support efficient fine-grain par-
allelism, e.g., the Uniform System [TC88], Shared Fila-
ments [EAL93] and Chores [EZ93]. The first two restrict
the generality of the threads model. In particular, the Uni-
form System uses task generators to provide parallelism,
much in the way a parallelizing compiler works, and in
Shared Filaments a thread (filament) cannot block. On the
other hand, Chores uses PRESTO threads as servers, so it
can block a chore when necessary. However, Chores does
not have a distributed implementation.

Support for the recursive programming style does not
generally exist on distributed-memory systems. For ex-
ample, in Munin [CBZ91], the user must program recur-
sive applications using a shared queue (bag) of unexecuted

tasks and must explicitly implement and lock the queue.
DF allows recursive programs to be written naturally and
efficiently by means of fork/join filaments.

Several systems use overlapping to mask communication
latency. Active Messages [vCGS92] accomplishes over-
lap explicitly by placing prefetch instructions sufficiently
far in advance of use that the shared data will arrive be-
fore it is used. On the other hand, DF achieves overlap
implicitly through multithreading. Both require some pro-
grammer support to achieve maximal overlap of communi-
cation and computation. In Active Messages, the user has
to make sure the prefetch is started soon enough, and in DF
the user must correctly place filaments in pools (although
we are working on making the placement automatic). The
Threaded Abstract Machine, TAM [CGSv93], uses Active
Messages to achieve overlap of communication and com-
putation in a parallel implementation of a dataflow lan-
guage.

CHARM is a fine-grain, explicit message-passing
threads package [FRS+91]. It provides architecture in-
dependence, overlap of communication and computation,
and dynamic load balancing. CHARM has a distributed-
memory programming model that can be run efficiently
on both shared- and distributed-memory machines. DF
provides functionality similar to CHARM using a shared-
memory programming model.

The Alewife [KCA91], a large-scale distributed-memory
multiprocessor, provides hardware support for overlapping
communication and computation. It provides the user with
a shared-memory address space and enforces a context-
switch to a new thread on any remote reference. The
Alewife and DF use similar ideas, except that DF is a soft-
ware implementation requiring no specialized hardware.

VISA, a DSM written for the functional language Sisal,
also uses overlapping [HB92]. Suspended threads are
pushed on a stack, so there can be many outstanding page
requests. The disadvantage of a stack-based approach is
that threads are resumed in the inverse order in which they
request pages. In DF a thread is scheduled as soon as the
page it requested arrives, whereas in VISA a thread is ex-
ecuted when it is popped off the stack. Thus, in VISA a
faulting thread cannot execute until after the page it re-
quested arrives and after completion of all other threads
that were subsequently started.

False sharing occurs when two nodes access locations
within the same page, and hence it can cause thrashing.
Mirage uses the time window coherence protocol to control
thrashing. In particular, a node keeps a page for some min-
imum time period to guarantee that it makes some progress
each time it acquires the page [FP89]. Munin uses re-
lease consistency in the write-shared protocol to handle
false sharing [CBZ91]. The memory is made consistent
at synchronization points so there is no thrashing. Tread-
Marks provides lazy-release consistency on a network of
Unix workstations [KDCZ94]. Simulation has shown that



this greatly reduces the number of messages relative to the
number of messages needed in systems like Munin. Some
DSMs provide different granularities of memory consis-
tency. For example, Clouds [DJAR91] and Orca [Bal90]
provide shared memory objects. This provides consistency
at the granularity of user-level objects instead of operat-
ing system pages, which can reduce thrashing. Blizzard
[SFL+94] and Midway [BZS93] minimize false sharing
by providing coherence at cache-line granularity. Midway
keeps a dirty bit per cache line and propagates changes at
synchronization points.

DF controls thrashing by using the Mirage window pro-
tocol and by providing the user control over the granular-
ity of DSM pages. DF provides no support for concurrent
writers to the same page; instead, the user must lay out the
data such that thrashing will not occur. Currently, this must
be solved at a higher level, such as by a compiler. We are
investigating ways to simplify this task.

6 Conclusion

We have argued that fine-grain parallelism is useful and that
it can be implemented quite efficiently on a workstation
cluster without modifying either the hardware or the oper-
ating systems software. The Distributed Filaments pack-
age has a simple interface, and we have found it easy to
use when programming parallel applications. DF achieves
efficiency by overlapping communication with useful com-
putation, by using a new datagram protocol that is both fast
and reliable, and by automatically balancing the work gen-
erated by fork/join computations. The net result is that DF
achieves good speedup on a variety of applications. In par-
ticular, as long as an application has a reasonable amount of
computation per node, communication latency due to pag-
ing messages can be effectively masked. (However, if the
cost of latency drops below that of context-switching, over-
lapping may no longer be beneficial.)

This paper describes DF, which is implemented on a
cluster of Sun workstations running SunOS. We have pro-
totypes running on a cluster of Sun workstations running
Solaris, DEC workstations running Mach, and an Intel
Paragon multicomputer running OSF. We are developing
more application programs to provide a better basis for per-
formance comparisons. We are also working on a number
of improvements to the DF package itself: automatic clus-
tering of filaments that share pages into execution pools,
automatic data placement, experiments with different types
of barriers for large numbers of processors, and support for
explicit message passing as well as DSM.

Acknowledgements

Dawson Engler and David “the Kid” Koski provided nu-
merous technical ideas and did lots of implementation
work. Bart Parliman ported DF to the Mach operating sys-
tem. Gregg Townsend provided comments on early drafts
of the paper. The referees also made many constructive
suggestions.

References

[ALL89] T.E. Anderson, E.D. Lazowska, and H.M. Levy. The
performance implications of thread management al-
ternatives for shared-memory multiprocessors. IEEE
Transactions on Computers, 38(12):1631–1644, De-
cember 1989.

[AOC+88] Gregory R. Andrews, Ronald A. Olsson, Michael
Coffin, Irving Elshoff, Kelvin Nilsen, Titus Pursin,
and Gregg Townsend. An overview of the SR lan-
guage and implementation. ACM Transactions on
Programming Languages and Systems, 10(1):51–86,
January 1988.

[Bal90] Henri E. Bal. Experience with distributed program-
ming in Orca. Proc. IEEE CS 1990 Int Conf on Com-
puter Languages, pages 79–89, March 1990.

[BS90] Peter A. Buhr and R.A. Stroobosscher. The uSys-
tem: providing light-weight concurrency on shared
memory multiprocessor computers running UNIX.
Software Practice and Experience, pages 929–964,
September 1990.

[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and
Wayne A. Sawdon. The Midway distributed shared
memory system. In COMPCON ’93, 1993.

[CBZ91] John B. Carter, John K. Bennett, and Willy
Zwaenepoel. Implementation and performance of
Munin. In Proceedings of 13th ACM Symposium On
Operating Systems, pages 152–164, October 1991.

[CGL86] Nicholas Carriero, David Gelernter, and Jerry Le-
ichter. Distributed data structures in Linda. In Thir-
teenth ACM Symp. on Principles of Programming
Languages, pages 236–242, January 1986.

[CGSv93] David E. Culler, Seth Copen Goldstein, Klaus Erik
Schauser, and Thorsten von Eicken. TAM—a com-
piler controlled threaded abstract machine. Journal of
Parallel and Distributed Computing, 18(3):347–370,
August 1993.

[CZ83] D.R. Cheriton and W. Zwaenepoel. The distributed V
kernel and its performance for diskless workstations.
In Proceedings of the Ninth ACM Symposium on Op-
erating Systems Principles, pages 128–140, October
1983.

[DJAR91] Partha Dasgupta, Richard J. LeBlanc Jr., Mus-
taque Ahmad, and Umakishore Ramachandran. The
Clouds distributed operating system. Computer,
pages 34–44, November 1991.



[EAL93] Dawson R. Engler, Gregory R. Andrews, and
David K. Lowenthal. Shared Filaments: Efficient
support for fine-grain parallelism on shared-memory
multiprocessors. TR 93-13, Dept. of Computer Sci-
ence, University of Arizona, April 1993.

[EZ93] Derek L. Eager and John Zahorjan. Chores: En-
hanced run-time support for shared memory paral-
lel computing. ACM Transactions on Computer Sys-
tems, 11(1):1–32, February 1993.

[FP89] Brett D. Fleisch and Gerald J. Popek. Mirage: a
coherent distributed shared memory design. In Pro-
ceedings of 12th ACM Symposium On Operating Sys-
tems, pages 211–223, December 1989.

[Fre94] Vincent W. Freeh. A comparison of implicit and ex-
plicit parallel programming. TR 93-30a, University
of Arizona, May 1994.

[FRS+91] W. Fenton, B. Ramkumar, V. A. Saletore, A. B.
Sinha, and L. V. Kale. Supporting machine indepen-
dent programming on diverse parallel architectures.
In Proceedings of the 1991 International Conference
on Parallel Processing, volume II, Software, pages
II–193–II–201, Boca Raton, FL, August 1991. CRC
Press.

[HB92] Matthew Haines and Wim Bohm. The design of
VISA: A virtual shared addressing system. Technical
Report CS-92-120, Colorado State University, May
1992.

[HFM88] D. Hansgen, R. Finkel, and U. Manber. Two algo-
rithms for barier synchronization. Int. Journal of Par-
allel Programming, 17(1):1–18, February 1988.

[KCA91] Kiyoshi Kurihara, David Chaiken, and Anant Agar-
wal. Latency tolerance through multithreading in
large-scale multiprocessors. In International Sympo-
sium on Shared Memory Multiprocessing, pages 91–
101, April 1991.

[KDCZ94] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and
Willy Zwaenepoel. TreadMarks: Distributed shared
memory on standard workstations and operating sys-
tems. In Proceedings of the 1994 Winter Usenix Con-
ference, pages 115–131, January 1994.

[LH89] Kai Li and Paul Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on Com-
puter Systems, 7(4), November 1989.

[SFL+94] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck,
Steven K. Reinhardt, James R. Larus, and David A.
Wood. Fine-grain access control for distributed
shared memory. In Sixth International Conference
on Architecture Support for Programming Languages
and Operating Systems (to appear), October 1994.

[SHG93] Jaswinder Pal Singh, John L. Hennessy, and Anoop
Gupta. Scaling parallel programs for multipro-
cessors: Methodology and examples. Computer,
26(7):42–50, July 1993.

[TC88] Robert H. Thomas and Will Crowther. The Uniform
system: an approach to runtime support for large
scale shared memory parallel processors. In 1988
Conference on Parallel Processing, pages 245–254,
August 1988.

[TL93] Chanramohan A. Thekkath and Henry M. Levy. Lim-
its to low-latency communication on high-speed net-
works. ACM Transactions on Computer Systems,
11(2):179–203, May 1993.

[vCGS92] Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Eric Schauser. Active Mes-
sages: a mechanism for intergrated communication
and computation. In Proceedings of the 19th Interna-
tional Symposium on Computer Architecture, pages
256–266, May 1992.


