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Abstract

Loops that contain cross-processor data dependencies, known as DOACROSS loops, are often
found in scientific programs. Efficiently parallelizing such loops is important yet nontrivial. One
useful parallelization technique for DOACROSS loops is pipelining, where each processor (node)
performs its computation in blocks; after each, it sends data to the next node in the pipeline.
The amount of computation before sending a message is called the block size; its choice, although
difficult to make statically, is important for efficient execution. This paper describes a flexible
run-time approach to choosing the block size. Rather than rely on static estimation of workload,
our system takes measurements during the first two iterations of a program and then uses the
results to build an execution model and choose an appropriate block size which, unlike a static
choice, may be nonuniform. To increase accuracy of the chosen block size, our execution model
takes intra- and inter-node performance into account. It is important to note that our system
finds an effective block size automatically, without experimentation that is necessary when using
a statically chosen block size. Performance on a network of workstations shows that programs
that use our run-time analysis outperform those that use static block sizes by as much as 18%
when the workload is unbalanced. When the workload is balanced, competitive performance is
achieved as long as the initial overhead 1s sufficiently amortized.
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1 Introduction

Distributed-memory parallel computing is widely used to speed up scientific applications. One key
obstacle to parallelization is the presence of data dependencies, which enforce a certain ordering;
their existence in loops may result in sequential execution of the entire loop. A significant number
of scientific applications contain loops whose data dependencies prevent all iterations from being
executed in parallel, including alternate direction implicit (ADI) integration, implicit hydrodynam-
ics codes [9], three-dimensional Multigrid methods [13], and air pollution simulations [14]. Loops
with data dependencies are often referred to as DOACROSS loops; if the dependencies can be precisely
determined by inspecting the program, we call them regular DOACROSS loops [15]. These can often

TAn earlier, abbreviated version of this paper entitled “Run-Time Selection of Block Size in Pipelined Parallel
Programs” appeared in the Proceedings of the Second Merged IPPS/SPDP, 1999.
*This work was supported by National Science Foundation CAREER Grant CCR-9733063.



be executed efficiently using a technique called pipelining, where each processor (node) computes
its work in blocks; after each, it passes the necessary results (via an explicit message) to the next
node in the pipeline. Once the pipe is full, all nodes execute in parallel; the data dependencies are
satisfied by forcing a node to block awaiting data from the node that precedes it in the pipeline.

One important parameter in a pipelined program is the amount of work performed by each
node before communicating. This is often referred to as the tile or block size and is critical to the
efficiency of the program. A small block size decreases node idle time but increases the amount
of communication, while a large block size decreases the amount of communication but increases
node idle time. Unfortunately, an effective block size cannot always be successfully chosen purely by
program inspection. There are several reasons for this. First, it is difficult to reason about workload
statically for both programmers and compilers [10]. For example, including cache performance in
overall workload analysis is an entire area of active research. In fact, the increasing complexity of
architectures (e.g., out-of-order execution, branch predication, etc.) makes it ever more difficult to
statically model a computation. Second, pipelined programs generally divide the computation into
equal-sized blocks, which may not be flexible enough to accommodate scientific applications with
unbalanced workloads; for example, an update may be guarded by a conditional (or, the machines
themselves might have heterogeneous CPUs). Finally, the best block size may be unknown until
run time if the amount of work depends on input values. Fortunately, most scientific programs
are iterative (i.e., contain a loop that encloses the entire computation), and many exhibit similar
characteristics on each iteration. This makes it possible to monitor a small number of iterations of
the outermost loop and use the results to guide decisions on future ones.

This paper develops novel run-time analysis that, given a pipelined parallel program without a
hard-coded block size, finds an effective block size. Specifically, our analysis:

e monitors the first two iterations of a pipelined computation, obtaining the times to update
(1) each column and (2) blocks of two columns. Monitoring for two (instead of one) iterations
allows us to estimate the effect of caching on workload.

o uses the results of the monitoring to select an effective block size. Qur system uses an efficient
heuristic that first chooses an initial (uniform) block size, then subdivides blocks that incur a
large waiting penalty, and finally eliminates excess messages. Our choice of block size adjusts
to the application and can be nonuniform.

e uses the computed block size during the rest of the computation.

Performance results are such that programs that apply our run-time analysis to choose the block
size outperform (by as much as 18%) those that make use of the best statically chosen block size
on an application with an unbalanced workload. When the workload is balanced, our programs
are competitive. After the first two iterations, when there no longer is monitoring (and sequential
execution), the run-time versions are sometimes even slightly faster than their static counterparts.
While the initial overhead is nontrivial, it is amortized to a small percentage of total execution time
as long as there are a sufficient number of iterations (which is common in scientific computing).
It is important to note that we are comparing our run-time versions to the best static version; the
latter must be found be executing each program many times with different block sizes for each
configuration of nodes. On the other hand, the run-time version works well with no programmer
experimentation.

The rest of this paper is organized as follows. Section 2 discusses the pipelining problem, our
programming model, and related work. Section 3 describes the run-time analysis to choose the
best block size, and Section 4 gives the performance results. Finally, Section 5 summarizes and
discusses future work.
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Figure 1 Three statements that illustrate three kinds of data dependencies. There is a true dependence
between S1 and S2, an anti dependence between S2 and S3, and an output dependence between S1 and S3.

2 Overview and Programming Model

Our run-time analysis is designed so that it could be integrated with a compiler or run-time system
that determines data dependencies and outputs a pipelined parallel program. Details on this
integration are given in Section 3.3. At present we transform a sequential program to a pipelined
parallel program by hand without specifying the block size. Our system automatically chooses this
block size.

Whether a programmer, compiler, or run-time system (or a combination thereof) transforms a
sequential program to a pipelined parallel program, three tasks must be performed: data depen-
dencies must be detected, pipelined code must be generated, and a block size must be chosen. The
next three subsections discuss each of these in turn. The last subsection discusses our programming
model.

2.1 Detecting and Handling Data Dependencies

Dependence analysis[3] is static analysis that inspects control flow and data flow to determine when
parallel execution of code does not violate its original (sequential) semantics. The two primary
types of dependencies are data and control; this paper focuses on the former. A data dependence
occurs when two references read or write a common memory location. There are four types of data
dependencies. A true dependence occurs when a statement contains a write to a location that is
later read. An anti dependence occurs when a statement contains a read of a location that is later
written, and an output dependence occurs when two statements both contain a write to the same
location. These three dependencies restrict program order. (The fourth, an input dependence, does
not; it means that two statements contain a read of the same location.) Examples are shown in
Figure 1. It should be noted that there has been a significant amount of work on automatic detection
of data dependencies, including the Fortran D compiler [6], SUIF, Polaris [16], [17], SUPERB [18],
and PARADIGM [19].

When a loop contains (1) a true data dependence, or (2) an anti or output data dependence
that it does not remove!, parallelization with no communication is not possible. This paper focuses
on loops with true dependencies where it is possible to extract some parallelism. Such loops,
often referred to as DOACROSS loops, are quite common in practice, and, when dependencies can be
determined statically, lend themselves to pipelining.

The basic idea behind discovering opportunities for pipeline parallelism is finding loops that
contain true dependencies. Consider the Alternate Direction Implicit (ADI) code fragment in
Figure 2. The row sweep can be executed without any internal communication if the data (array
X) is distributed by rows ({BLOCK,*} in HPF [1]). So, a programmer or parallelizing compiler

! Anti and output dependencies can be removed, but this requires extra memory [4]; hence, it is not always practical
to remove them.



for iter := 1 to NUMITERS {
/* row sweep */
for i := 0 to N-1
for j := 0 to N-1
X[i10] := F(x[i10j]1, x[il[j-11, ACi1, BLil)
/* column sweep */
for i := 0 to N-1
for j := 0 to N-1
X[i10] := F(x[i10j]1, x[i-11C31, ACil, BLil)

Figure 2 Outline of a sequential ADI program.

would likely choose this distribution. However, if this distribution is chosen for the first loop, then
the column sweep will have a cross-processor (cross-node) dependence because X [¢][j] depends on
X[i— 1][j]; the distribution of X by rows results in node k requiring access to the last row of node
k — 1 in order to update its own first row. Note that the exact dependence can be determined
statically.

Because of the cross-node dependence, there are four choices that can be made for the second
loop:

Serialize it.

e Transpose the matrix before the loop, allowing the loop to be run in parallel with no internal
communication. This requires another transpose after the loop.

Schedule the iterations of the column sweep such that the dependencies are not violated.

Pipeline the loop, leaving the matrix in a row-wise distribution.

If the loop is time consuming, serializing it will be detrimental to speedup. The second choice
will be best if each loop has a significant amount of computation, and communication is extremely
fast, so that the transpose doesn’t dominate the computation. However, for large problem sizes, a
transpose, which does not typically speed up well, becomes very expensive. Several researchers have
noted the inferiority of transposing to pipelining on larger problems [13, 6]. The applications that
we tested in this paper do not perform an extremely large amount of computation per iteration,
so a transpose would dominate the execution time?. The third choice includes such methods as
pre-synchronized scheduling [12], staggered distribution [20], and cyclic staggered distribution [5].
Pre-synchronized scheduling splits a loop into two loops at the point where the dependence occurs.
The loops are then executed by having processors remove iterations from a queue. If the iteration
is from the first loop, all iterations from the second loop that are then eligible to execute are added
to the queue. The staggered distribution scheme is the same except that it assigns iterations from
the first loop to processors such that later processors receive more iterations. This is done so that
later processors perform useful work while awaiting data necessary to begin iterations from the
second loop. Cyclic staggered distribution differs from staggered distribution in that it attempts to
relieve the load imbalance from the first loop by assigning iterations cyclically. All three scheduling
schemes will either incur more communication or more load imbalance than pipelining, although

2We implemented a parallel transpose routine to verify this.



for iter := 1 to NUMITERS {
/* row sweep */
for i := start to end
for j := 0 to N-1
X[i10] := F(x[i10j]1,x04i105-11,A04i],BLi])
/* (pipelined) column sweep */
for jj := 0 to N-1 by blocksize
if (myId !'= 0)
recv X[start-1]1[jj:jj+blocksize] from myId-1
for 1 := start to end
for j := jj to jjtblocksize-1
X[110j] := F(x[i10j],x[i-11051,A0i]1,BL4iD)
if (myId !'= p-1)
send X[end][jj:jj+blocksize] to myId+i

Figure 3 Pipelined ADI program. Variables start and end are local to each node and based on the
number of participating nodes such that the work is divided evenly. A specific block size must be chosen at
some point. Note this assumes that the blocksize divides N evenly.

the communication delay will most likely be smaller. (Section 2.4 explains why for our applications,
improvements in delay do not outweigh the increased communication.) This paper discusses ways
to efficiently pipeline and so assumes the fourth choice.

Note that we assume that all dependencies are detected outside of our system; this can be at
compile or run time. In general it can be very difficult to determine the exact dependencies. Many
have studied compile- and run-time methods to detect arbitrary dependencies, such as [21, 22, 7, 23].

2.2 Generating Pipelined Code

After the dependencies are determined, pipelined code must be generated. This is done by first
“strip-mining” [2] the inner (j) loop, meaning that the step size is increased (by blocksize) and
renamed (jj). A new inner loop is then added (j) that iterates over the “chunks” of the jj loop.
Next, a check is made to see if it is legal to move the jj loop outside of the ¢ loop. If so, the loops
are interchanged; if not, pipelining cannot be performed. Finally, the necessary synchronization
must be inserted (by using send and receive on a distributed-memory machine). This is because
it is not legal for a node to start updating a block until it has received the appropriate values from
the previous node. The resulting program is shown in Figure 3. The execution of this program is
shown pictorially in Figure 4.

2.3 Choosing the Block Size

Once the code has been generated, an appropriate block size must be found; note that the pipelined
code in Figure 3 leaves the block size open. However, it is necessary to select a block size. A smaller
block size will decrease node idle time but increase the amount of communication. Conversely, a
larger block size will decrease the amount of communication but increase the node idle time. The
best size depends on the ratio of computation to communication; specifically, this includes the cost
of updating each element of the matrix, the cost of copying a message from the application program
to and from the network, and the cost of the network latency of the message itself. The latter three
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Figure 4 Picture of the general execution model of a pipelined parallel program. An individual block,
which can start when the blocks above and to the left are complete, is updated in the direction of of the
arrows (by subrows).

F(n1l, n2, n3, nd) {
if (n1 > 0)
update point

Figure 5 A function with a nonuniform amount of work.

costs can be determined through training sets [24]; that is, tests are run for each new architecture
and the results are made accessible to a programmer or compiler. However, static estimation of the
cost of computation is problematic for two primary reasons. First and most importantly, compiler
algorithms for static workload estimation are currently immature [10], and the increasing complexity
of new architectures makes improvement in this area difficult. For example, current sequential
architectures have some or all of the following: deep pipelines, multiple levels of cache memory,
out-of-order execution, delay slots, and dynamic memory disambiguation. Future architectures
will likely have branch predication. It is becoming nearly impossible to reason statically about
dynamic performance of programs. Furthermore, if compilers have difficulty estimating workload,
programmers will have an even more difficult time. Second, when the workload depends on values
that cannot be determined until run time, the amount of work cannot in general be determined
statically.

Figure 5 shows possible code that calls for a variable block size and almost certainly cannot be
inferred statically. To find the best block size in general, it is necessary to use run-time analysis.

2.4 Programming Model

Our programming model encompasses many important scientific applications. In general, we sup-
port parallel programs that read from and write to arbitrary-dimensional arrays. However, there
are some restrictions.

First, we support long-running, iterative scientific applications, which allows for the possibility
of using run-time information to improve future iterations, as well as the amortization of our run-



time overhead on the first two iterations. If the computation is not long running, the choice of
block size becomes less critical (and the program may not even be parallelized in the first place).

Second, we support regular DOACROSS loops, which allows static detection of pipelining opportu-
nities. On the other hand, it is not possible to determine statically if irregular DOACROSS loops can
be pipelined; this requires an inspector/executor method [21] just to determine if pipelining is legal
(and advantageous). One could then presumably choose a block size using information gathered
by the inspector, although we know of no such work.

Third, we require that a loop be at least doubly nested. This allows pipelining to be efficient
because the first node is able to continually produce values into the pipeline; if the loop is singly
nested, the first node must wait for the last node’s data, which greatly degrades the efficiency of
pipelining.

Fourth, we support only BLOCK data distributions, which means that each node operates on
a contiguous set of rows. (Note this is independent of the block size.) The potential advantage
of BLOCKCYCLIC distributions, where each node can have several distinct sets of rows, is that it
is possible to decrease waiting time even further; in particular, using BLOCK, fine-grain pipelining
(block size of 1) still causes each node to wait for n/p data points. With a BLOCKCYCLIC distribution,
this could be decreased to just a single point at the cost of more messages. In our experiments, fine-
grain pipelining was never the best way to pipeline; in fact, the smallest block size that was ever the
most effective was 8. Based on these tests, we decided that supporting BLOCKCYCLIC distributions
was not worth the added overhead (more timing measurements, more complex algorithm to choose
a block size, etc.).

Finally, we only pipeline in a single dimension. If an application has a triply nested loop over a
three-dimensional array (as our airshed code does), we can actually pipeline it in either one or two
dimensions. With two dimensional pipelining, each block can require several messages instead of
one; as with BLOCKCYCLIC distributions, this can decrease waiting time but increases the number
of messages. Integrating two-dimensional pipelining into our run-time execution model would add
significant overhead because the search space is much larger. More work is needed to determine
how well a run-time approach will perform in this more general model.

3 Run-Time Analysis

We assume that the a DOACROSS loop is transformed to a pipelined loop as in Figure 3. However,
instead of choosing the best block size statically, we use the following approach:

e During the first two iterations of a pipelined computation, we measure the time to compute

each column as well as each pair of columns®.

e At the end of the second iteration, the column times are sent to a master node.

e The master node (1) chooses an initial (uniform) block size, (2) looks for blocks that cause
excessive waiting and subdivides them recursively, and (3) eliminates excess messages by
re-executing the algorithm on adjacent blocks that are not subdivided.

e The block size is no longer necessarily uniform (as shown in Figure 4); it could, for example,
look like that of Figure 6. The resulting pipeline schedule is sent to each node, and it is used
for the rest of the computation.

*Taking measurements on the first iteration can sometimes be inaccurate due to initialization effects such as cold
caches. We experimented with delaying measurements until the second and third iterations, but found that there was
no significant difference. This is because in our applications, all arrays are initialized before the main computation
loop.
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Figure 6 Picture of a pipelining schedule with a nonuniform block size.

For the following explanation, we will assume a two-dimensional problem of size n x n (all indices
are assumed to start at 0) with p nodes numbered 0 through p — 1.

There are two main components of developing a run-time model for pipelined parallel programs.
First, a model for sequential performance on each node must be developed. Second, a model for
pipelined parallel performance involving all nodes must be developed. The next two sections discuss
each of these in turn. The last section discusses issues involved with potential integration of our
analysis with a compiler.

3.1 Sequential Model

As described earlier, in a pipelined computation points of a data structure are grouped into blocks;
when each point in a block is updated, we say the block itself is updated. (For our work a block is
always a subarray.) The core of modeling sequential performance is developing a formula for the
time taken per node to update each of its blocks. We denote Tfj as the time to update the 5% block
on node ¢ using a block size of k. (As will be discussed in Section 3.2, we will limit consideration to
those k that are powers of 2.) The quantity Tfj includes fyena(k), the time to copy the boundary
points in block j (needed by the next node in the pipeline) to the network, if necessary (node p—1
need not copy). (We will discuss foenq(k) further in Section 3.2.)

To obtain Tfj for each node, we measure the time to compute each column on each node during
the first iteration. We must measure each column because one extreme that we will consider—
fine-grain pipelining—uses blocks that consist of single columns. By timing columns, we limit the
number of timer calls (gethrtime) to O(n) (twice per column), while the workload is at least O(n?).
(Otherwise, to recover the times for individual columns it might be necessary to time each point,
which would increase the overhead to a significant O(n?).)

There are two nontrivial issues with sequential performance. First, we must measure all sub-
columns on all nodes. Second, we must incorporate caching into our model.

3.1.1 Measuring Column Times

The first issue that arises is how to acquire column times for each node. We choose to execute
the first iteration sequentially on node 0 (the master node). Node 0 performs all computation and
measures the times for the subcolumns that each node will perform once the data is distributed. The
primary disadvantage to this scheme is that the first iteration is executed sequentially rather than



in parallel, but this overhead is amortized over a large number of iterations. The other possibility
is to execute the first iteration in parallel, have all nodes measure their own computation, and have
each node send all of its column times to node 0 (this was the algorithm we previously used in
[25]). The primary problem with this is that inaccurate measurements may result on all but the
first node; for example, while the second node is updating its first column, the first node may send
several columns, interrupting the second node’s computation and perturbing the measurements.
After the first iteration, node 0 will have a vector ¢ of size p, where each vector element is itself
a vector of n column times; ?; ; denotes the time to update column 7 on node 7. It might appear

that we can compute the time for all blocks in a straightforward manner, i.e., Tfj = Zgi—;lk)k_l ti1

+ fsend(k) for nodes 0 through p — 2, and Tfj = Zgi—;lk)k_l t;; for node p — 1.

However, pipelining changes the iteration space of a loop from a row sweep to a column-oriented
sweep (blocks consist of groups of columns). For reasonably large problems, this can have an adverse
effect on cache behavior. If fine-grain pipelining is used, the computation proceeds column-wise
on each node; if the column size exceeds the cache size, every array access that varies with the
enclosing loop indices will result in a memory access. (We use C, which is row major; the reverse
problem will occur in Fortran.) We verified this phenomenon with the Shade cache simulator [11]
that we parameterized to model the first-level data cache of the Pentium Pro architecture (which
is 8K with a 32 byte line size). We executed a sequential (pipeline-style) program that simply
writes to each element of a two-dimensional array of double-precision numbers. With a block size
of one, every write resulted in a cache miss; with a block size of two, every other resulted in a miss.
With block sizes 4 and higher, every fourth write resulted in a cache miss. Similar observations
have recently been noted in [26]. Therefore, estimating larger block times by simply summing the
columns within that block will overestimate execution times for all blocks with size greater than
one.

3.1.2 Incorporating Caching

The second issue is how to incorporate caching into our model. Determining its effect statically is
difficult. We have devised a method to include caching with a reasonable overhead: we measure an
additional (sequential) iteration using a block size of two instead of one. This will mean that there
is the potential to reuse each cache block once, assuming the block holds data for array accesses
that vary with the enclosing loop indices. Whether this actually results in a significant difference
between a block of size 2 and the sum of its two corresponding consecutive columns depends on
several complicated factors (the number of distinct array accesses and conflict misses, the total
size, line size, and associativity of the cache, number of non-array instructions in the loop, etc).
With knowledge of only the line size of the cache, we can develop an effective run-time model,
which is discussed below. On the other hand, a purely static model must take all of these factors
into account; a good representative paper is [27]. However, besides being limited by what can
be inferred, research on choosing block sizes by statically modeling the cache generally focuses on
choosing block size to improve locality in sequential programs; as we will see in Section 3.2, we
must trade off locality with a number of other factors, including message send and receive time as
well as wait time. Therefore, any analysis to choose block size for pipelined parallel programs must
include accurate workload analysis, which we have already argued is problematic.

We will explain the inclusion of caching into our run-time model with the help of the example in
Figure 7; in particular, assume that for node 0, measuring the first two iterations finds that columns
0-7 each take 4,4, 5, 5,5, 5, 6, and 6 time units respectively, and blocks [0,1], [2,3], [4,5], and [6,7]
take 6, 6, 6, and 9 time units. First, we compute the difference between the sum of two consecutive
columns with their corresponding block of size 2 and store this in a vector called cacheOverhead.



using block size of 1 using block size of 2

2 4 5 3

cacheOverhead
8 11 19
[18-(2+4+4) 22-(5+3+3) {0-(2+4+4)-(5+3+3)
estimated block size of 4 estimated block size of 8

Figure 7 Estimating block execution times taking caching into account. At the top are the two measure-
ments our system takes (block sizes of one and two). The cache overhead is then the difference of columns ¢
and 7 + 1 with block 7/2. We then compute the effective times for larger blocks by summing the individual
columns in the block and subtracting to take into account that only a single memory access per cache block
is necessary. For example, with a block size of 4, the first block will incur one memory access (and take time
4) but then hit in the cache 3 times (which takes time 2, 1, and 1). This example assumes that four array
elements fit into a cache block.

(This vector is of size n/2.) In our example, the differences would be 2, 4, 5, and 3, respectively
(4 +4 — 6 for the first entry, 5 + 5 — 6 for the next, and 5+ 5 — 5 and 6 + 6 — 9 for the last two).
Then, starting with Tfj as computed above (in isolation, without considering cache behavior), we
subtract from each block of 4, 8, ..., n the cache overhead, unless we know that a cache miss will
result. We assume that a cache miss must occur every four elements, because on the Pentium Pro
the line size is 32 bytes and our arrays contain doubles. In our example, the initial block times for
[0,1,2,3] and [4,5,6,7] would be 18 and 22 (the respective sums over columns). Then, assuming that
first column of each block results in a cache miss, we subtract 2, 4, and 4 from the first block and
5, 3, and 3 from the second block, resulting in 8 and 11 as the effective block times. Note that the
first and third elements of cacheQOverhead are subtracted only once each, because the first and fifth
columns require a memory access. For a block size of 8, note that the effective time is the sum of
the effective times of the two blocks of 4. This is expected because no additional caching benefit
exists with a block size of 8—a cache line can only hold four doubles. The same principle holds for
block sizes of 16, 32, ..., n. This gives us accurate estimates of Tfj for all k.

3.2 Pipelined Parallel Model

Now that we have accurate times for the computation of each block, we can develop an accurate
model for a pipelined parallel program. We define, for a message of size z, foena(®) and freew(2)
as the overhead due to copying a message to (from) the network, and f,.;(#) as the latency. They
are computed from separate experiments (training sets) where several test runs are performed and
averaged.

Note that our current model does not take interrupt time into account as in [28]. Interrupt
time is the operating system time taken to copy an arriving message to an operating system queue.
We consider only send and receive overheads, as in [29]. (The work in [28] does not select block
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sizes at run time.) We are investigating the effect of interrupts in our current research; this will be
discussed further in Section 5.

Our algorithm to choose an effective pipelining schedule works in four steps. First, choose an
initial (uniform) block size. Next, look for blocks that cause excessive waiting and subdivide them
recursively. Finally, eliminate excess messages by re-executing the algorithm on adjacent blocks
that are not subdivided. Finally, send the schedule describing when messages are sent and received
to each node.

3.2.1 Choosing an Initial Block Size

The first step is to choose an initial block size; we will consider all block sizes that are a power of
two, as these allow us a reasonably wide range of choices at a small cost. We denote Sﬁj as the time
that node ¢ can start its computation of block j using a block size of k. The basic idea is: for each
block size, estimate its completion time using the block update times from each node along with
the message overheads. For a given block size, node 0 commences the computation at time 0 (i.e.,
S(’io = 0) by updating its first block, which takes time Téo? node 1 must wait to start updating its
first block until it receives a message from node 0 (due to the data dependence). Hence, the time
that node 1 can start updating its first block is given by

Sf,O = S(]JiO + T(io + fnet(k) + frecv(k)-
(Recall that Tf; includes focnq(k) if necessary.) Node 0 can start updating its second block at time
55,1 = Sg,o + T(io-

Note that the second message will arrive at node 1 at time S(’il + Téﬁl + fuet(k). Node 1 will be
ready for the message after it updates its first block, which occurs at time Sfo + le,o- The message
may arrive before node 1 has finished updating its first block, in which case it can start as soon as
it finishes updating le,o- Otherwise, node 1 must wait until this message arrives. Note that either
way, node 1 must read the message from the network before starting its second block. Hence, the
time at which node 1 can start updating its second block is

Sf,l = maX{Sg,l + T(il + fnet(k)v Sf,O + le,O}‘I'fTecv(k)‘
In general, a formula for Sﬁ ; is given as follows:
Séio - 0

Szk,o = Szk—l,O + Tik—l,o + fret(k) + freew(k)
and, for 1 < j <n/k -1,

Szk,j = maX{Szk—l,j + Tik—l,j + fnet(k)v Szk,j—l + Tﬁj—l}"’frecv(k)‘

This indicates that node i can start block j at the later of two times: (1) when it has finished
updating all of its own previous blocks and (2) it has received the message for the same numbered
block on node ¢ — 1. The completion time is then S]’)“_Ln/k_l + T;_Ln/k_l, which is the time that it
takes node p — 1 to start updating its last block plus the update time for that block. We estimate
the completion time for & = 1,2,4,...n, and take the smallest such time; the algorithm has a
complexity of O(pnlogn). Figure 8 illustrates the tradeoff (for two columns) between using a block

size of 1 and 2.
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wait to update this column

message message until message arrival and messags
column 0 on node 1
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Figure 8 The difference between block sizes of 1 (left) and 2 (right). On the left, node 0 sends a message
after updating each column, which means that node 1 must wait to start its second column until it has
finished its first column and it has received the necessary data from node 0. On the right, node 0 updates
both columns before sending a message; after receiving it, node 1 can update both of its columns. Recall
that #; ; is the time to compute column j on node 1.

3.2.2 Subdividing Blocks

The next step is to improve upon the initial block size by subdividing blocks. Consider the case
where most of the work is clustered in one part of the matrix. A compromise is made in our first step
(above) between a fine granularity, where there is less idle time in the part of the matrix where a lot
of work is done but excess messages when updating the rest of the matrix, and a coarse granularity,
where there are fewer messages sent but significant idle time where the work is done. Without
simply decreasing the initial block size (which can substantially increase the message overhead),
we would like to reduce the idle time.

Our analysis handles this using the following heuristic. We start by using the best block size
(denoted best) determined with the above analysis and attempt to improve upon it by potentially
subdividing blocks. We have already computed the start time for each block on each node (Sf;“);
in doing so, we know the time that node ¢ must wait for a message from node ¢ — 1, if any. Recall
that S%St is computed by taking the maximum of (1) the time to compute the first j — 1 blocks
on node ¢ and (2) the time to compute the first 7 blocks on node ¢ — 1 and transfer a message to
node 7. When the time given by (1) is smaller than the time given by (2), node ¢ must wait for
a time equal to the difference between (2) and (1). On the other hand, if the time given by (1) is
greater, there is no waiting time. The key waiting time is that of the last node (p — 1), because
the pipeline cannot be completely full while the last node is waiting for data. So, for each block
on node p — 1 we compute the waiting time; any block that has a relatively large waiting time
might benefit from being split into smaller blocks, which may reduce the waiting time. Hence, we
invoke the first step of our algorithm recursively on the first block whose waiting time exceeds our
prespecified threshold (we used 10% of the total wait time). This will in fact effect a finer block size
if profitable, because the message overhead incurred by finer-grain pipelining will not be nearly as
significant on a smaller block (there are fewer points). After subdividing this block, we recompute
the total wait time as well as the wait time for each block, taking into account the subdivided
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for iter := 1 to NUMITERS {
// row sweep omitted
while not at end of schedule {
last := getLastReceivePoint(schedule)
next := getNextReceivePoint(schedule)
recv X[start-1][last:next] from myId-1
for i := start to end
for j := last to next
X[110] := F(x[i10j]1,%x[i-11051,A0i],BLi])
send X[end][last:next] to myId+1

Figure 9 Pipelined ADI program with our system. The schedule is generated by our run-time analysis. It
supports operations getLastReceivePoint and getNextReceivePoint, which are used to determine what
points should be received. They allow for a nonuniform block size.

block. We then look for a (different) block to subdivide. When no blocks need to be subdivided,

we are done. We found this simple heuristic to perform well in practice.

3.2.3 Eliminating Excess Messages

The third step improves upon the first step without modifying the regions that were subdivided
in the second step. We do this by eliminating excess messages. In the example above we use
fine-grain pipelining on the parts of the matrix with significant computation; similarly, we want to
use coarse-grain pipelining on the parts of the matrix where there is little work. To realize this,
we re-run the original (global) algorithm on consecutive groups of blocks that were not subdivided.
This eliminates unnecessary messages when part of the matrix contains very little work, but the
initial global block size was relatively small due to significant work on a different part of the matrix.

3.2.4 Distributing the Schedule

After the completed schedule has been determined by node 0, it sends each node its schedule
before execution of the third iteration. For the rest of the computation, each node executes and
communicates according to this schedule; an outline of the code is shown in Figure 9. Note that
executing the first two iterations sequentially means that all the data resides on node 0 during that
time; data is also distributed to the nodes before the third iteration.

3.3 Integration with a Compiler

Although our analysis is currently stand-alone, it is designed so that it can be integrated with a
compiler that determines data dependencies and possibly transforms a sequential program to a
pipelined parallel one. This section discusses the basic implementation ideas.

First, to integrate our system with a compiler that transforms a sequential program to a
distributed-memory pipelined parallel one, such as PARADIGM [19], would be conceptually straight-
forward. The compiler subsystem that determines block size would be disabled; furthermore, in-
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stead of generating code that used a static block size as in Figure 3, code would be generated
to use the schedule generated by our system, shown in Figure 9. This would certainly require a
modification of the code generator. Code would also need to be inserted to (1) sequentialize the
first two iterations, (2) obtain the times on those iterations in a similar way that our system, and
(3) insert a call to invoke our analysis after the second iteration. While the implementation effort
for these items using a compiler like PARADIGM is unknown at this time, it appears possible.

Integrating our system with a shared-memory parallelizing compiler such as SUIF presents an
additional hurdle. This is because we require explicit message passing code. In this case we have
two options. First, the compiler could be retargeted to generate distributed-memory code; however,
this is an extremely time-consuming project. The other possibility is to integrate the compiler with
a distributed shared memory system, which several researchers have investigated in the context
of SUTF [30, 31]. Unfortunately, DSM systems are ill-equipped to handle pipelined programs. In
separate work we have added explicit support to DSM systems to support pipelining [32]. This
means that all the pieces necessary to integrate our analysis with SUIF exist. Still, the total
implementation effort involved to make such an integrated system work would be significant and
surely more involved than retargeting a distributed-memory compiler.

4 Performance

This section reports the performance of four programs. The first three are ADI integration, Hydro
(an implicit hydrodynamics kernel), and Gauss-Seidel iteration. For each, an effective block size
might be able to be inferred statically. The fourth is an adaptation of an airshed simulation where
the workload is not uniform; it represents applications that need to use run-time information and
nonuniform block sizes to achieve good performance. Although the programs are relatively small
in size, they are indicative of larger programs (or may be called as subroutines in them).

For each application we developed a program that uses our run-time analysis. For an accurate
comparison, we also developed a program with a (parameterizable) static block size that does not
perform any run-time analysis. In addition, we implemented a separate sequential program. For
each application we present the results of the program with the best static block size and compare
it to the program that uses our run-time analysis. It is important to note that finding the best
static block size requires experimenting with many block sizes for 2, 4, and 8 nodes, whereas the
run-time version is run once for each set of nodes.

Below, we first discuss the overheads incurred by our run-time analysis. Next, we discuss
the accuracy of the predicted execution times of our model. Then, we briefly describe the four
applications and present the results of runs on 2, 4, and 8 nodes, along with (1) a comparison
between the best and worst static block size and (2) a measure of the time per iteration excluding
the first two (where monitoring occurs). The sequential program times are also reported; we chose
problem sizes such that sequential programs took around 80-150 seconds®.

All tests were run on a network of 8 Pentium Pros connected by a 100 Mbs Fast Ethernet, using
Solaris and the cc compiler with the -0 flag. The execution times reported are the median of at
least three test runs, as reported by gethrtime. The tests were performed when the only other
active processes were daemons.

“Note that the longer the tests run, the better the programs using run-time analysis perform relative to the
programs that use a statically determined block size. This is because the overhead is amortized over more iterations.
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‘Nodes “2‘4‘8‘

ADI 11511
Hydro 417113
Gauss-Seidel || 2 ]3| 6
Airshed 317113

Table 1 Total overhead, to the nearest percent, of our run-time analysis on each of our applications.
This percentage is computed by determining how much longer the first two iterations take than with the
best statically chosen block size. Note that the larger the number of iterations, the smaller the overhead
percentage will be. We chose a moderate number of iterations (300 at most), and the moderate overhead on
8 nodes reflects that.

4.1 Overhead of Run-Time Analysis

In general, we found the overheads of the run-time analysis in our system to be small. They consist
of the following quantities:

e executing the program sequentially on the first two iterations,

e taking measurements (gethrtime),

e estimating completion time for the (possibly nonuniform) block sizes,

¢ adding extra code to allow nonuniform block sizes according to the schedule, and

¢ choosing an ineffective block size (when an effective size can be statically determined) due to
timing inaccuracies.

The most significant overhead arises from executing the program sequentially on the first two
iterations; however, it is manageable as long as it is amortized over a reasonably large number
of iterations. However, sequential execution has a higher relative cost as the number of nodes
increases. It is important to note that executing the first two iterations in parallel has its own
overheads (for example, sending the times to node 0 can become a bottleneck for larger number of
nodes). The time to take measurements involves 2 system calls per column; a call to gethrtime
takes about 4.5 microseconds, so total timing overhead is on the order of milliseconds. The time
to choose the best block size increases with the number of nodes, but even on our eight-node tests,
it was small (a few tenths of a second). The extra code to allow nonuniform block sizes (which
involves using the generated schedule to decide when to send and receive) is outside of the main
computation loops and so is negligible.

A potentially serious problem is choosing an ineffective block size. In the tests we performed,
our run-time analysis did not always choose the global block size that was the best (see the 2-node
Hydro test as well as Gauss-Seidel); however, the one it did choose had performance that was
practically identical to the best block size. In general, though, it is possible to choose a poor block
size if wallclock timing is inaccurate due to the existence of other user processes. However, because
we are operating as the only user on the machine, this has not happened in our tests. Table 1
shows the overall overhead percentage on 2, 4. and 8 nodes for our applications. Note that we use
a moderate number of iterations; for a reasonably large number, the overhead would be very small.
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Figure 10 Accuracy of the model on the four appplications for two, four, and eight nodes, respectively.
The time shown, in seconds, is the time for just the pipelining portion on a single iteration. (ADI and Airshed
have non-pipelining phases, so the total iteration time is greater than that shown here.) The run-time version
that incorporates caching is much more accurate than the one without.

4.2 Model Accuracy

It is important to inspect the accuracy of the predicted execution times of our model. Figure 10
shows the execution times of a single iteration for 2, 4, and 8 nodes on each of our programs. Data
is shown for the best static block size and the estimation of the completion time using that block
size by our run-time model both with and without taking caching into consideration. (Only the
pipelined portion of the iteration is measured.) Clearly our model is much more accurate when
caching is taken into account; the estimated iteration times often are around double the actual
times. This is because the intra-node block times for block sizes of 4, 8, ..., n are overestimated;
what really are cache hits are modeled as memory accesses. Our model is usually within 10% of
the actual time per iteration. The figure does not show how well the model performs on block
sizes other than the best; it is most inaccurate in estimating performance of a block size of 1. The
difference in that case can be as much as 20% from actual. We tend to underpredict the actual
time in this case (and to a lesser extent with a block size of 2); this is most likely because the large
number of messages causes many interrupts on all but the first node, and our current model does
not take this into account.

4.3 ADI

ADI (Alternate Direction Implicit) integration is one way to implement numerical integration. It
can be parallelized exactly as shown in Figure 3.

The execution times for two versions of ADI, size 1024, are shown in Table 2. The program that
uses our run-time analysis first finds a global block size of 32; then, interestingly, it subdivides only
the first block (due to the initial waiting time) into blocks of size 4. The best static block size on
2,4, and 8 nodes was 32. As can be seen from Figure 11, on 2 nodes, the run-time version was in
fact slightly better than the static version on a per-iteration basis after the second iteration. This
appears to be because the waiting time is reduced by the subdivision of the first block. However on
8 nodes, the run-time version performs slightly worse; there is less work, so the waiting time is not
as severe. The overhead of the first two iterations accounts for almost all of the difference between
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‘ Nodes H Time (2/4/8) ‘ Blocksize (2/4/8) ‘

Run-Time 76.1/41.1/23.7 32/32/32 (*)
Best Static 74.5/38.8/21.5 32/32/32
Sequential Time 135

Table 2 ADI integration, 1024 x 1024, 100 iterations (times in seconds). Run-Time refers to the program
that makes a run-time choice of block size, and Best Static refers to the best out of the static programs. The
(*) indicates that a size of 32 was chosen for all blocks except the first, which was subdivided into blocks of
4 by our algorithm due to its waiting time.

Per-Iteration Times

2

g2 —

o

E 1 — — M2 nodes
S o8 54 nodes
Bos [E 8 nodes
S

=

12}

ADI Hydro Gauss-  Airshed
Seidel
Program

Figure 11 Ratio of time per iteration of static version to run-time version for each application on two,
four, and eight nodes. A ratio greater than one indicates that the run-time version is superior.

the static and run-time version. Note also that a poor choice of block size can be detrimental; for
example, on 2 nodes, a static block size of 1 is 39% slower overall on each iteration than a block
size of 32 (the best); furthermore, the pipelining part of the computation is three times slower.
Figure 12 indicates this disparity in performance. Finally, because the workload is uniform in
ADI, an effective block size might be able to be chosen statically. Still, our run-time analysis can
sometimes produce a slightly better one, even though this is a program for which static analysis is
possible.

4.4 Hydro

Hydro is kernel number 23 from the Livermore Loops [9]; it is an excerpt from an implicit hydro-
dynamics code. It consists of a prespecified number of iterations, where each updates every point
on a two-dimensional matrix. Because each update is based on a four point stencil on the same
matrix, there is a data dependence that prevents full parallelization of the loop.

The execution times for two versions of Hydro are shown in Table 3. The run-time version
first finds a global block size of 32; as with ADI, it then subdivides only the first block. However,
although this improves the per-iteration time, the improvement is extremely small because the
work per iteration of Hydro is much less than that of ADI. The per-iteration times found by our
analysis are virtually identical or just slightly better than their static counterparts (see Figure 11).
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Effect of Poor Block Size Choice
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Figure 12 Ratio of worst static block size to best static block size for each application on two, four, and
eight nodes. The worst block size was 1 for each application except airshed, where it was 512. (A block size
of 1024 was not considered because that sequentializes program execution.)

| Nodes | Time (2/4/8) | Blocksize (2/4/8) |
Run-Time 19.6/30.0/18.8 | 32/32/32 (%)
Best Static 48.0/28.3/16.9 64/32/32
Sequential Time 83.1

Table 3 Hydro kernel, 1024 x 1024, 200 iterations (times in seconds). Run-Time refers to the program
that makes a run-time choice of block size, and Best Static refers to the best out of the static programs. The
(*) indicates that a size of 32 was chosen for all blocks except the first, which was subdivided into blocks of
size 4 by our algorithm due to its waiting time.

As with ADI, the overhead of the first two iterations causes the run-time version to be slower than
the static version; on 8 nodes the overhead is 11.2%. The best static block size for Hydro was 64 on
two nodes and 32 on four and eight nodes. (On two nodes, performance was nearly identical with
block sizes of 32 and 64.) A poor choice of block size has a similar effect as that seen with ADIL

4.5 Gauss-Seidel

Laplace’s equation in two dimensions is the partial differential equation 5/%(®) = 0. Given boundary
values for a region, its solution is the steady-state values of interior points. These values can be
approximated numerically by using a finite difference method such as Gauss-Seidel iteration, which
repeatedly computes new values for each point for a specified number of iterations [8]. Our program
uses an eight point stencil.

Gauss-Seidel iteration is efficient compared to explicit iterative techniques such as Jacobi iter-
ation, but hard to parallelize because the computation of each point depends on both old and new
values in the array. This prevents parallelization with communication only on the boundaries of
each node’s subarrays. A “wavefront” parallelization method may be used, because parallelism is
possible on each diagonal. Another way to solve it is to use pipelining, which is the method we
employ. Computation proceeds sequentially within a block, which preserves the dependencies in

18



‘ Nodes H Time (2/4/8) ‘ Blocksize (2/4/8) ‘

Run-Time 69.9/40.6/26.5 16/16/16 (*)
Best Static 67.2/38.3/23.9 32/32/32
Sequential Time 109

Table 4 Gauss-Seidel, 1024 x 1024, 300 iterations (times in seconds). Run-Time refers to the program that
makes a run-time choice of block size, and Best Static refers to the best out of the static programs. The (¥*)
indicates that a size of 16 was chosen for all blocks except the first, which was subdivided into blocks of size
4 by our algorithm due to its waiting time.

the application.

The results of our Gauss-Seidel experiments are shown in Table 4. One notable difference
between these tests and the Hydro tests are that the run-time version found a smaller block size
(16), although the time is only slightly worse than with a size of 32. It also subdivided the first
block; however, the time per iteration is inferior to the program with the best static block size,
as can be seen from Figure 11. We believe that this is due to slight timer variations caused by
the very fine-grain nature of this program. Also, the fine granularity causes the extremely poor
performance of the worst static block size, which was 1; almost of all of the time is spent sending
and receiving messages.

4.6 Airshed Simulation

Our fourth test program is an airshed simulation, which models the formation, reaction and trans-
port of atmospheric pollutants and related chemical species®. Our benchmark program is adapted
from the tpsuite from Carnegie Mellon [33]. Our version performs only the main computational
loop of the calculation, which consists of a transport calculation, followed a chemistry phase, fol-
lowed by another transport calculation. For our purposes, the important computational aspect
of the transport calculation is to perform a row-wise (across the first dimension) update to every
element of a three-dimensional array. The chemistry phase also updates the array, but in a column-
wise manner, making pipelining a reasonable way to parallelize this program. The chemistry phase
has an unbalanced workload, making run-time analysis especially important for this program. This
program represents less regular applications, where the workload is nonuniform.

The execution times for two versions of the airshed simulation are shown in Table 5. The
work was clustered at the right end of the matrix, so an effective composition of blocks is to use
larger blocks (size 32) that encompass the part of the matrix that has little work and then fine-
grain pipelining (block size of 1) in the part where there is significant work. The program using
our run-time analysis found this block size by finding an initial static block size of 4 (step 1 of our
algorithm), subdividing the right part of the schedule, on which a block size of 1 was obtained (step
2 of our algorithm), and eliminating excess messages from the rest of the schedule, on which a block
size of 32 was obtained (step 3 of our algorithm). The best static block size in our experiments was
8; this is a compromise—it avoids the severe message overhead of fine-grain pipelining where there
is little work and severe load imbalance where there is significant work. Still, the static program
incurs more overhead than necessary on all parts of the matrix, which accounts for the superiority

®The general airshed program allows both task and data parallelism; we only exploit data parallelism.
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‘ Nodes H Time (2/4/8) ‘ Blocksize (2/4/8) ‘

Run-Time 80.3/45.2/26.9 | {32/1}/{32/1}/{32/1}
Best Static 86.4/50.8/32.8 8/8/8
Sequential Time 135

Table 5 Airshed simulation, 1024 x 1024 x 4, 100 iterations (times in seconds). Run-Time refers to the
program that makes a run-time choice of block size. It uses a block size of 4 on the first 1000 columns and a
block size of 1 (fine-grain pipelining) on the last 24. Best Static refers to the best out of the static programs.

of the run-time version. This can be seen from Figure 11 on a per-iteration basis. The disparity in
this application is enough that the run-time version is superior even given the overhead of the first
two iterations; overall, it is 7%, 11%, and 18% faster on two, four, and eight nodes, respectively.

5 Summary

We have presented a run-time approach to selecting block sizes in pipelined parallel programs. This
allows us to choose an effective block size even when a source program is not amenable to static
analysis. Furthermore, our system allows the choice of block size to be nonuniform, which allows
increased flexibility. Our analysis monitors the program for two iterations, builds an execution
model that includes the effect of caching, and takes a three-step procedure to find an effective block
size: choose an initial block size, subdivide blocks that incur a large waiting penalty, and then
eliminate excess messages.

We implemented our system on a cluster of 8 Pentium Pros. The programs that made use
of run-time information to select block sizes had faster execution times than those that make a
static choice when the workload is unbalanced. For programs that are amenable to static analysis,
the programs that use our system are competitive. Our run-time system provides a potentially
attractive target for a parallelizing compiler; in particular, a sequential program need only be
translated to a pipelined parallel program. No workload analysis needs to be done to find an
effective block size. We believe that our system is a viable way to efficiently execute a larger class
of pipelined programs than previously possible.

Future Work

We intend to continue work on using run-time analysis to choose block sizes in pipelined parallel
programs; there are many avenues that can still be explored. These include integrating interrupts
into our model, investigating better (graph-theoretic) algorithms to choose the block size, and
implementing efficient pipelining in distributed shared memory systems.

Including interrupts into the model (as in [28]) will be a challenge. It means that new recur-
rences will need to be developed; the work in [28] does not represent the problem with a discrete
formulation as we do. How the new formulation will interact with our analysis to select block sizes
is unknown.

Although our heuristic worked well, we are looking at finding even better algorithms to choose
block sizes as well as allowing a larger search space. We have discussed formulating the problem
using an acyclic directed graph and finding the longest path, which would then represent the
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completion time. The goal is then to improve this path. We would also like to determine how far
our solution is from optimal.
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