
Accurately Selecting Block Size at Run Time in Pipelined Parallel

Programs�y

David K� Lowenthal

Department of Computer Science

The University of Georgia

Athens� GA �������	�	

dkl�cs�uga�edu

January 

� ����

Abstract

Loops that contain cross�processor data dependencies� known as DOACROSS loops� are often
found in scienti�c programs� E�ciently parallelizing such loops is important yet nontrivial� One
useful parallelization technique for DOACROSS loops is pipelining � where each processor �node�
performs its computation in blocks� after each� it sends data to the next node in the pipeline�
The amount of computation before sending a message is called the block size� its choice� although
di�cult to make statically� is important for e�cient execution� This paper describes a 	exible
run�time approach to choosing the block size� Rather than rely on static estimation of workload�
our system takes measurements during the �rst two iterations of a program and then uses the
results to build an execution model and choose an appropriate block size which� unlike a static
choice� may be nonuniform� To increase accuracy of the chosen block size� our execution model
takes intra� and inter�node performance into account� It is important to note that our system
�nds an e
ective block size automatically� without experimentation that is necessary when using
a statically chosen block size� Performance on a network of workstations shows that programs
that use our run�time analysis outperform those that use static block sizes by as much as ��

when the workload is unbalanced� When the workload is balanced� competitive performance is
achieved as long as the initial overhead is su�ciently amortized�

Keywords� pipelining� block size� compiler� run�time system

� Introduction

Distributed�memory parallel computing is widely used to speed up scienti�c applications� One key
obstacle to parallelization is the presence of data dependencies� which enforce a certain ordering�
their existence in loops may result in sequential execution of the entire loop� A signi�cant number
of scienti�c applications contain loops whose data dependencies prevent all iterations from being
executed in parallel� including alternate direction implicit �ADI� integration� implicit hydrodynam�
ics codes �	
� three�dimensional Multigrid methods ���
� and air pollution simulations ��

� Loops
with data dependencies are often referred to as DOACROSS loops� if the dependencies can be precisely
determined by inspecting the program� we call them regular DOACROSS loops ���
� These can often

yAn earlier� abbreviated version of this paper entitled �Run�Time Selection of Block Size in Pipelined Parallel
Programs� appeared in the Proceedings of the Second Merged IPPS�SPDP� �����

�This work was supported by National Science Foundation CAREER Grant CCR��	

��
�

�



be executed e�ciently using a technique called pipelining� where each processor �node� computes
its work in blocks� after each� it passes the necessary results �via an explicit message� to the next
node in the pipeline� Once the pipe is full� all nodes execute in parallel� the data dependencies are
satis�ed by forcing a node to block awaiting data from the node that precedes it in the pipeline�

One important parameter in a pipelined program is the amount of work performed by each
node before communicating� This is often referred to as the tile or block size and is critical to the
e�ciency of the program� A small block size decreases node idle time but increases the amount
of communication� while a large block size decreases the amount of communication but increases
node idle time� Unfortunately� an e�ective block size cannot always be successfully chosen purely by
program inspection� There are several reasons for this� First� it is di�cult to reason about workload
statically for both programmers and compilers ���
� For example� including cache performance in
overall workload analysis is an entire area of active research� In fact� the increasing complexity of
architectures �e�g�� out�of�order execution� branch predication� etc�� makes it ever more di�cult to
statically model a computation� Second� pipelined programs generally divide the computation into
equal�sized blocks� which may not be �exible enough to accommodate scienti�c applications with
unbalanced workloads� for example� an update may be guarded by a conditional �or� the machines
themselves might have heterogeneous CPUs�� Finally� the best block size may be unknown until
run time if the amount of work depends on input values� Fortunately� most scienti�c programs
are iterative �i�e�� contain a loop that encloses the entire computation�� and many exhibit similar
characteristics on each iteration� This makes it possible to monitor a small number of iterations of
the outermost loop and use the results to guide decisions on future ones�

This paper develops novel run�time analysis that� given a pipelined parallel program without a
hard�coded block size� �nds an e�ective block size� Speci�cally� our analysis�

� monitors the �rst two iterations of a pipelined computation� obtaining the times to update
��� each column and ��� blocks of two columns� Monitoring for two �instead of one� iterations
allows us to estimate the e�ect of caching on workload�

� uses the results of the monitoring to select an e�ective block size� Our system uses an e�cient
heuristic that �rst chooses an initial �uniform� block size� then subdivides blocks that incur a
large waiting penalty� and �nally eliminates excess messages� Our choice of block size adjusts
to the application and can be nonuniform�

� uses the computed block size during the rest of the computation�

Performance results are such that programs that apply our run�time analysis to choose the block
size outperform �by as much as ���� those that make use of the best statically chosen block size
on an application with an unbalanced workload� When the workload is balanced� our programs
are competitive� After the �rst two iterations� when there no longer is monitoring �and sequential
execution�� the run�time versions are sometimes even slightly faster than their static counterparts�
While the initial overhead is nontrivial� it is amortized to a small percentage of total execution time
as long as there are a su�cient number of iterations �which is common in scienti�c computing��
It is important to note that we are comparing our run�time versions to the best static version� the
latter must be found be executing each program many times with di�erent block sizes for each
con�guration of nodes� On the other hand� the run�time version works well with no programmer
experimentation�

The rest of this paper is organized as follows� Section � discusses the pipelining problem� our
programming model� and related work� Section � describes the run�time analysis to choose the
best block size� and Section 
 gives the performance results� Finally� Section � summarizes and
discusses future work�

�



S�� x �� ��

S�� y �� x�

S�� x �� ��

Figure � Three statements that illustrate three kinds of data dependencies� There is a true dependence
between S� and S�� an anti dependence between S� and S�� and an output dependence between S� and S��

� Overview and Programming Model

Our run�time analysis is designed so that it could be integrated with a compiler or run�time system
that determines data dependencies and outputs a pipelined parallel program� Details on this
integration are given in Section ���� At present we transform a sequential program to a pipelined
parallel program by hand without specifying the block size� Our system automatically chooses this
block size�

Whether a programmer� compiler� or run�time system �or a combination thereof� transforms a
sequential program to a pipelined parallel program� three tasks must be performed� data depen�
dencies must be detected� pipelined code must be generated� and a block size must be chosen� The
next three subsections discuss each of these in turn� The last subsection discusses our programming
model�

��� Detecting and Handling Data Dependencies

Dependence analysis ��
 is static analysis that inspects control �ow and data �ow to determine when
parallel execution of code does not violate its original �sequential� semantics� The two primary
types of dependencies are data and control� this paper focuses on the former� A data dependence
occurs when two references read or write a common memory location� There are four types of data
dependencies� A true dependence occurs when a statement contains a write to a location that is
later read� An anti dependence occurs when a statement contains a read of a location that is later
written� and an output dependence occurs when two statements both contain a write to the same
location� These three dependencies restrict program order� �The fourth� an input dependence� does
not� it means that two statements contain a read of the same location�� Examples are shown in
Figure �� It should be noted that there has been a signi�cant amount of work on automatic detection
of data dependencies� including the Fortran D compiler ��
� SUIF� Polaris ���
� ���
� SUPERB ���
�
and PARADIGM ��	
�

When a loop contains ��� a true data dependence� or ��� an anti or output data dependence
that it does not remove�� parallelization with no communication is not possible� This paper focuses
on loops with true dependencies where it is possible to extract some parallelism� Such loops�
often referred to as DOACROSS loops� are quite common in practice� and� when dependencies can be
determined statically� lend themselves to pipelining�

The basic idea behind discovering opportunities for pipeline parallelism is �nding loops that
contain true dependencies� Consider the Alternate Direction Implicit �ADI� code fragment in
Figure �� The row sweep can be executed without any internal communication if the data �array
X� is distributed by rows �fBLOCK�	g in HPF ��
�� So� a programmer or parallelizing compiler

�Anti and output dependencies can be removed� but this requires extra memory 
��� hence� it is not always practical
to remove them�

�



for iter �� � to NUMITERS �

�� row sweep ��

for i �� � to N��

for j �� � to N��

X	i
	j
 �� F�X	i
	j
� X	i
	j��
� A	i
� B	i



�� column sweep ��

for i �� � to N��

for j �� � to N��

X	i
	j
 �� F�X	i
	j
� X	i��
	j
� A	i
� B	i



�

Figure � Outline of a sequential ADI program�

would likely choose this distribution� However� if this distribution is chosen for the �rst loop� then
the column sweep will have a cross�processor �cross�node� dependence because X �i
�j
 depends on
X �i� �
�j
� the distribution of X by rows results in node k requiring access to the last row of node
k � � in order to update its own �rst row� Note that the exact dependence can be determined
statically�

Because of the cross�node dependence� there are four choices that can be made for the second
loop�

� Serialize it�

� Transpose the matrix before the loop� allowing the loop to be run in parallel with no internal
communication� This requires another transpose after the loop�

� Schedule the iterations of the column sweep such that the dependencies are not violated�

� Pipeline the loop� leaving the matrix in a row�wise distribution�

If the loop is time consuming� serializing it will be detrimental to speedup� The second choice
will be best if each loop has a signi�cant amount of computation� and communication is extremely
fast� so that the transpose doesn�t dominate the computation� However� for large problem sizes� a
transpose� which does not typically speed up well� becomes very expensive� Several researchers have
noted the inferiority of transposing to pipelining on larger problems ���� �
� The applications that
we tested in this paper do not perform an extremely large amount of computation per iteration�
so a transpose would dominate the execution time�� The third choice includes such methods as
pre�synchronized scheduling ���
� staggered distribution ���
� and cyclic staggered distribution ��
�
Pre�synchronized scheduling splits a loop into two loops at the point where the dependence occurs�
The loops are then executed by having processors remove iterations from a queue� If the iteration
is from the �rst loop� all iterations from the second loop that are then eligible to execute are added
to the queue� The staggered distribution scheme is the same except that it assigns iterations from
the �rst loop to processors such that later processors receive more iterations� This is done so that
later processors perform useful work while awaiting data necessary to begin iterations from the
second loop� Cyclic staggered distribution di�ers from staggered distribution in that it attempts to
relieve the load imbalance from the �rst loop by assigning iterations cyclically� All three scheduling
schemes will either incur more communication or more load imbalance than pipelining� although

�We implemented a parallel transpose routine to verify this�






for iter �� � to NUMITERS �

�� row sweep ��

for i �� start to end

for j �� � to N��

X	i
	j
 �� F�X	i
	j
�X	i
	j��
�A	i
�B	i



�� �pipelined
 column sweep ��

for jj �� � to N�� by blocksize

if �myId �� �


recv X	start��
	jj�jj�blocksize
 from myId��

for i �� start to end

for j �� jj to jj�blocksize��

X	i
	j
 �� F�X	i
	j
�X	i��
	j
�A	i
�B	i



if �myId �� p��


send X	end
	jj�jj�blocksize
 to myId��

�

Figure � Pipelined ADI program� Variables start and end are local to each node and based on the
number of participating nodes such that the work is divided evenly� A speci�c block size must be chosen at
some point� Note this assumes that the blocksize divides N evenly�

the communication delay will most likely be smaller� �Section ��
 explains why for our applications�
improvements in delay do not outweigh the increased communication�� This paper discusses ways
to e�ciently pipeline and so assumes the fourth choice�

Note that we assume that all dependencies are detected outside of our system� this can be at
compile or run time� In general it can be very di�cult to determine the exact dependencies� Many
have studied compile� and run�time methods to detect arbitrary dependencies� such as ���� ��� �� ��
�

��� Generating Pipelined Code

After the dependencies are determined� pipelined code must be generated� This is done by �rst
�strip�mining� ��
 the inner �j� loop� meaning that the step size is increased �by blocksize� and
renamed �jj�� A new inner loop is then added �j� that iterates over the �chunks� of the jj loop�
Next� a check is made to see if it is legal to move the jj loop outside of the i loop� If so� the loops
are interchanged� if not� pipelining cannot be performed� Finally� the necessary synchronization
must be inserted �by using send and receive on a distributed�memory machine�� This is because
it is not legal for a node to start updating a block until it has received the appropriate values from
the previous node� The resulting program is shown in Figure �� The execution of this program is
shown pictorially in Figure 
�

��� Choosing the Block Size

Once the code has been generated� an appropriate block size must be found� note that the pipelined
code in Figure � leaves the block size open� However� it is necessary to select a block size� A smaller
block size will decrease node idle time but increase the amount of communication� Conversely� a
larger block size will decrease the amount of communication but increase the node idle time� The
best size depends on the ratio of computation to communication� speci�cally� this includes the cost
of updating each element of the matrix� the cost of copying a message from the application program
to and from the network� and the cost of the network latency of the message itself� The latter three

�



Node 0

Node 1

Node 2

Node 3

start0

end0

start1

end1

start2

start3

end2

end3

Figure � Picture of the general execution model of a pipelined parallel program� An individual block�
which can start when the blocks above and to the left are complete� is updated in the direction of of the
arrows �by subrows��

F
n�� n�� n�� n�� 


if 
n� � ��

update point

�

Figure � A function with a nonuniform amount of work�

costs can be determined through training sets ��

� that is� tests are run for each new architecture
and the results are made accessible to a programmer or compiler� However� static estimation of the
cost of computation is problematic for two primary reasons� First and most importantly� compiler
algorithms for static workload estimation are currently immature ���
� and the increasing complexity
of new architectures makes improvement in this area di�cult� For example� current sequential
architectures have some or all of the following� deep pipelines� multiple levels of cache memory�
out�of�order execution� delay slots� and dynamic memory disambiguation� Future architectures
will likely have branch predication� It is becoming nearly impossible to reason statically about
dynamic performance of programs� Furthermore� if compilers have di�culty estimating workload�
programmers will have an even more di�cult time� Second� when the workload depends on values
that cannot be determined until run time� the amount of work cannot in general be determined
statically�

Figure � shows possible code that calls for a variable block size and almost certainly cannot be
inferred statically� To �nd the best block size in general� it is necessary to use run�time analysis�

��� Programming Model

Our programming model encompasses many important scienti�c applications� In general� we sup�
port parallel programs that read from and write to arbitrary�dimensional arrays� However� there
are some restrictions�

First� we support long�running� iterative scienti�c applications� which allows for the possibility
of using run�time information to improve future iterations� as well as the amortization of our run�

�



time overhead on the �rst two iterations� If the computation is not long running� the choice of
block size becomes less critical �and the program may not even be parallelized in the �rst place��

Second� we support regular DOACROSS loops� which allows static detection of pipelining opportu�
nities� On the other hand� it is not possible to determine statically if irregular DOACROSS loops can
be pipelined� this requires an inspector�executor method ���
 just to determine if pipelining is legal
�and advantageous�� One could then presumably choose a block size using information gathered
by the inspector� although we know of no such work�

Third� we require that a loop be at least doubly nested� This allows pipelining to be e�cient
because the �rst node is able to continually produce values into the pipeline� if the loop is singly
nested� the �rst node must wait for the last node�s data� which greatly degrades the e�ciency of
pipelining�

Fourth� we support only BLOCK data distributions� which means that each node operates on
a contiguous set of rows� �Note this is independent of the block size�� The potential advantage
of BLOCKCYCLIC distributions� where each node can have several distinct sets of rows� is that it
is possible to decrease waiting time even further� in particular� using BLOCK� �ne�grain pipelining
�block size of �� still causes each node to wait for n�p data points� With a BLOCKCYCLIC distribution�
this could be decreased to just a single point at the cost of more messages� In our experiments� �ne�
grain pipelining was never the best way to pipeline� in fact� the smallest block size that was ever the
most e�ective was �� Based on these tests� we decided that supporting BLOCKCYCLIC distributions
was not worth the added overhead �more timing measurements� more complex algorithm to choose
a block size� etc���

Finally� we only pipeline in a single dimension� If an application has a triply nested loop over a
three�dimensional array �as our airshed code does�� we can actually pipeline it in either one or two
dimensions� With two dimensional pipelining� each block can require several messages instead of
one� as with BLOCKCYCLIC distributions� this can decrease waiting time but increases the number
of messages� Integrating two�dimensional pipelining into our run�time execution model would add
signi�cant overhead because the search space is much larger� More work is needed to determine
how well a run�time approach will perform in this more general model�

� Run�Time Analysis

We assume that the a DOACROSS loop is transformed to a pipelined loop as in Figure �� However�
instead of choosing the best block size statically� we use the following approach�

� During the �rst two iterations of a pipelined computation� we measure the time to compute
each column as well as each pair of columns��

� At the end of the second iteration� the column times are sent to a master node�

� The master node ��� chooses an initial �uniform� block size� ��� looks for blocks that cause
excessive waiting and subdivides them recursively� and ��� eliminates excess messages by
re�executing the algorithm on adjacent blocks that are not subdivided�

� The block size is no longer necessarily uniform �as shown in Figure 
�� it could� for example�
look like that of Figure �� The resulting pipeline schedule is sent to each node� and it is used
for the rest of the computation�

�Taking measurements on the �rst iteration can sometimes be inaccurate due to initialization e�ects such as cold
caches� We experimented with delaying measurements until the second and third iterations� but found that there was
no signi�cant di�erence� This is because in our applications� all arrays are initialized before the main computation
loop�

�



Node 0

Node 1

Node 2

Node 3

start0

end0

start1

end1

start2

start3

end2

end3

Figure � Picture of a pipelining schedule with a nonuniform block size�

For the following explanation� we will assume a two�dimensional problem of size n� n �all indices
are assumed to start at �� with p nodes numbered � through p� ��

There are two main components of developing a run�time model for pipelined parallel programs�
First� a model for sequential performance on each node must be developed� Second� a model for
pipelined parallel performance involving all nodes must be developed� The next two sections discuss
each of these in turn� The last section discusses issues involved with potential integration of our
analysis with a compiler�

��� Sequential Model

As described earlier� in a pipelined computation points of a data structure are grouped into blocks �
when each point in a block is updated� we say the block itself is updated� �For our work a block is
always a subarray�� The core of modeling sequential performance is developing a formula for the
time taken per node to update each of its blocks� We denote T k

i�j as the time to update the jth block
on node i using a block size of k� �As will be discussed in Section ���� we will limit consideration to
those k that are powers of ��� The quantity T k

i�j includes fsend�k�� the time to copy the boundary
points in block j �needed by the next node in the pipeline� to the network� if necessary �node p� �
need not copy�� �We will discuss fsend�k� further in Section �����

To obtain T k
i�j for each node� we measure the time to compute each column on each node during

the �rst iteration� We must measure each column because one extreme that we will consider�
�ne�grain pipelining�uses blocks that consist of single columns� By timing columns� we limit the
number of timer calls �gethrtime� toO�n� �twice per column�� while the workload is at least O�n���
�Otherwise� to recover the times for individual columns it might be necessary to time each point �
which would increase the overhead to a signi�cant O�n����

There are two nontrivial issues with sequential performance� First� we must measure all sub�
columns on all nodes� Second� we must incorporate caching into our model�

����� Measuring Column Times

The �rst issue that arises is how to acquire column times for each node� We choose to execute
the �rst iteration sequentially on node � �the master node�� Node � performs all computation and
measures the times for the subcolumns that each node will perform once the data is distributed� The
primary disadvantage to this scheme is that the �rst iteration is executed sequentially rather than

�



in parallel� but this overhead is amortized over a large number of iterations� The other possibility
is to execute the �rst iteration in parallel� have all nodes measure their own computation� and have
each node send all of its column times to node � �this was the algorithm we previously used in
���
�� The primary problem with this is that inaccurate measurements may result on all but the
�rst node� for example� while the second node is updating its �rst column� the �rst node may send
several columns� interrupting the second node�s computation and perturbing the measurements�

After the �rst iteration� node � will have a vector t of size p� where each vector element is itself
a vector of n column times� ti�j denotes the time to update column j on node i� It might appear

that we can compute the time for all blocks in a straightforward manner� i�e�� T k
i�j �

P�j����k��
l�j�k ti�l

� fsend�k� for nodes � through p� �� and T k
i�j �

P�j����k��
l�j�k ti�l for node p� ��

However� pipelining changes the iteration space of a loop from a row sweep to a column�oriented
sweep �blocks consist of groups of columns�� For reasonably large problems� this can have an adverse
e�ect on cache behavior� If �ne�grain pipelining is used� the computation proceeds column�wise
on each node� if the column size exceeds the cache size� every array access that varies with the
enclosing loop indices will result in a memory access� �We use C� which is row major� the reverse
problem will occur in Fortran�� We veri�ed this phenomenon with the Shade cache simulator ���

that we parameterized to model the �rst�level data cache of the Pentium Pro architecture �which
is �K with a �� byte line size�� We executed a sequential �pipeline�style� program that simply
writes to each element of a two�dimensional array of double�precision numbers� With a block size
of one� every write resulted in a cache miss� with a block size of two� every other resulted in a miss�
With block sizes 
 and higher� every fourth write resulted in a cache miss� Similar observations
have recently been noted in ���
� Therefore� estimating larger block times by simply summing the
columns within that block will overestimate execution times for all blocks with size greater than
one�

����� Incorporating Caching

The second issue is how to incorporate caching into our model� Determining its e�ect statically is
di�cult� We have devised a method to include caching with a reasonable overhead� we measure an
additional �sequential� iteration using a block size of two instead of one� This will mean that there
is the potential to reuse each cache block once� assuming the block holds data for array accesses
that vary with the enclosing loop indices� Whether this actually results in a signi�cant di�erence
between a block of size � and the sum of its two corresponding consecutive columns depends on
several complicated factors �the number of distinct array accesses and con�ict misses� the total
size� line size� and associativity of the cache� number of non�array instructions in the loop� etc��
With knowledge of only the line size of the cache� we can develop an e�ective run�time model�
which is discussed below� On the other hand� a purely static model must take all of these factors
into account� a good representative paper is ���
� However� besides being limited by what can
be inferred� research on choosing block sizes by statically modeling the cache generally focuses on
choosing block size to improve locality in sequential programs� as we will see in Section ���� we
must trade o� locality with a number of other factors� including message send and receive time as
well as wait time� Therefore� any analysis to choose block size for pipelined parallel programs must
include accurate workload analysis� which we have already argued is problematic�

We will explain the inclusion of caching into our run�time model with the help of the example in
Figure �� in particular� assume that for node �� measuring the �rst two iterations �nds that columns
��� each take 
� 
� �� �� �� �� �� and � time units respectively� and blocks ����
� ����
� �
��
� and ����

take �� �� �� and 	 time units� First� we compute the di�erence between the sum of two consecutive
columns with their corresponding block of size � and store this in a vector called cacheOverhead�

	



4 5 6 94 5 5 5 6 6

4 5 32

22-(5+3+3)18-(2+4+4)

8 11 19

cacheOverhead

using block size of 1 using block size of 2

estimated block size of 4 estimated block size of 8

6 5

40-(2+4+4)-(5+3+3)

Figure � Estimating block execution times taking caching into account� At the top are the two measure�
ments our system takes �block sizes of one and two�� The cache overhead is then the di
erence of columns i
and i � � with block i��� We then compute the e
ective times for larger blocks by summing the individual
columns in the block and subtracting to take into account that only a single memory access per cache block
is necessary� For example� with a block size of �� the �rst block will incur one memory access �and take time
�� but then hit in the cache � times �which takes time �� �� and ��� This example assumes that four array
elements �t into a cache block�

�This vector is of size n���� In our example� the di�erences would be �� 
� �� and �� respectively
�
 � 
 � � for the �rst entry� � � �� � for the next� and � � �� � and � � �� 	 for the last two��
Then� starting with T k

i�j as computed above �in isolation� without considering cache behavior�� we
subtract from each block of 
� �� � � � � n the cache overhead� unless we know that a cache miss will
result� We assume that a cache miss must occur every four elements� because on the Pentium Pro
the line size is �� bytes and our arrays contain doubles� In our example� the initial block times for
��������
 and �
������
 would be �� and �� �the respective sums over columns�� Then� assuming that
�rst column of each block results in a cache miss� we subtract �� 
� and 
 from the �rst block and
�� �� and � from the second block� resulting in � and �� as the e�ective block times� Note that the
�rst and third elements of cacheOverhead are subtracted only once each� because the �rst and �fth
columns require a memory access� For a block size of �� note that the e�ective time is the sum of
the e�ective times of the two blocks of 
� This is expected because no additional caching bene�t
exists with a block size of ��a cache line can only hold four doubles� The same principle holds for
block sizes of ��� ��� � � � � n� This gives us accurate estimates of T k

i�j for all k�

��� Pipelined Parallel Model

Now that we have accurate times for the computation of each block� we can develop an accurate
model for a pipelined parallel program� We de�ne� for a message of size x� fsend�x� and frecv�x�
as the overhead due to copying a message to �from� the network� and fnet�x� as the latency� They
are computed from separate experiments �training sets� where several test runs are performed and
averaged�

Note that our current model does not take interrupt time into account as in ���
� Interrupt
time is the operating system time taken to copy an arriving message to an operating system queue�
We consider only send and receive overheads� as in ��	
� �The work in ���
 does not select block

��



sizes at run time�� We are investigating the e�ect of interrupts in our current research� this will be
discussed further in Section ��

Our algorithm to choose an e�ective pipelining schedule works in four steps� First� choose an
initial �uniform� block size� Next� look for blocks that cause excessive waiting and subdivide them
recursively� Finally� eliminate excess messages by re�executing the algorithm on adjacent blocks
that are not subdivided� Finally� send the schedule describing when messages are sent and received
to each node�

����� Choosing an Initial Block Size

The �rst step is to choose an initial block size� we will consider all block sizes that are a power of
two� as these allow us a reasonably wide range of choices at a small cost� We denote Sk

i�j as the time
that node i can start its computation of block j using a block size of k� The basic idea is� for each
block size� estimate its completion time using the block update times from each node along with
the message overheads� For a given block size� node � commences the computation at time � �i�e��
Sk
��� � �� by updating its �rst block� which takes time T k

���� node � must wait to start updating its
�rst block until it receives a message from node � �due to the data dependence�� Hence� the time
that node � can start updating its �rst block is given by

Sk
��� � Sk

��� � T k
��� � fnet�k� � frecv�k��

�Recall that T k
i�j includes fsend�k� if necessary�� Node � can start updating its second block at time

Sk
��� � Sk

��� � T k
����

Note that the second message will arrive at node � at time Sk
��� � T k

��� � fnet�k�� Node � will be

ready for the message after it updates its �rst block� which occurs at time Sk
����T k

���� The message
may arrive before node � has �nished updating its �rst block� in which case it can start as soon as
it �nishes updating T k

���� Otherwise� node � must wait until this message arrives� Note that either
way� node � must read the message from the network before starting its second block� Hence� the
time at which node � can start updating its second block is

Sk
��� � maxfSk

��� � T k
��� � fnet�k�� S

k
���� T k

���g�frecv�k��

In general� a formula for Sk
i�j is given as follows�

Sk
��� � �

Sk
i�� � Sk

i���� � T k
i���� � fnet�k� � frecv�k�

and� for � � j � n�k � ��

Sk
i�j � maxfSk

i���j � T k
i���j � fnet�k�� S

k
i�j��� T k

i�j��g�frecv�k��

This indicates that node i can start block j at the later of two times� ��� when it has �nished
updating all of its own previous blocks and ��� it has received the message for the same numbered
block on node i� �� The completion time is then Sk

p���n�k���T k
p���n�k��� which is the time that it

takes node p� � to start updating its last block plus the update time for that block� We estimate
the completion time for k � �� �� 
� � � �n� and take the smallest such time� the algorithm has a
complexity of O�pn logn�� Figure � illustrates the tradeo� �for two columns� between using a block
size of � and ��

��



t(1,0) t(1,1)

t(0,0) t(0,1)

t(1,0) t(1,1)

t(0,0) t(0,1)

column 0 on node 1 

wait to update this column 
until message arrival and

has been updated

message messagemessage

node 1

node 0

node 1

node 0

Figure � The di
erence between block sizes of � �left� and � �right�� On the left� node � sends a message
after updating each column� which means that node � must wait to start its second column until it has
�nished its �rst column and it has received the necessary data from node �� On the right� node � updates
both columns before sending a message� after receiving it� node � can update both of its columns� Recall
that ti�j is the time to compute column j on node i�

����� Subdividing Blocks

The next step is to improve upon the initial block size by subdividing blocks� Consider the case
where most of the work is clustered in one part of the matrix� A compromise is made in our �rst step
�above� between a �ne granularity� where there is less idle time in the part of the matrix where a lot
of work is done but excess messages when updating the rest of the matrix� and a coarse granularity�
where there are fewer messages sent but signi�cant idle time where the work is done� Without
simply decreasing the initial block size �which can substantially increase the message overhead��
we would like to reduce the idle time�

Our analysis handles this using the following heuristic� We start by using the best block size
�denoted best� determined with the above analysis and attempt to improve upon it by potentially
subdividing blocks� We have already computed the start time for each block on each node �Sbest

i�j ��
in doing so� we know the time that node i must wait for a message from node i� �� if any� Recall
that Sbest

i�j is computed by taking the maximum of ��� the time to compute the �rst j � � blocks
on node i and ��� the time to compute the �rst j blocks on node i� � and transfer a message to
node i� When the time given by ��� is smaller than the time given by ���� node i must wait for
a time equal to the di�erence between ��� and ���� On the other hand� if the time given by ��� is
greater� there is no waiting time� The key waiting time is that of the last node �p � ��� because
the pipeline cannot be completely full while the last node is waiting for data� So� for each block
on node p � � we compute the waiting time� any block that has a relatively large waiting time
might bene�t from being split into smaller blocks� which may reduce the waiting time� Hence� we
invoke the �rst step of our algorithm recursively on the �rst block whose waiting time exceeds our
prespeci�ed threshold �we used ��� of the total wait time�� This will in fact e�ect a �ner block size
if pro�table� because the message overhead incurred by �ner�grain pipelining will not be nearly as
signi�cant on a smaller block �there are fewer points�� After subdividing this block� we recompute
the total wait time as well as the wait time for each block� taking into account the subdivided

��



for iter �� � to NUMITERS �

�� row sweep omitted

while not at end of schedule �

last �� getLastReceivePoint�schedule


next �� getNextReceivePoint�schedule


recv X	start��
	last�next
 from myId��

for i �� start to end

for j �� last to next

X	i
	j
 �� F�X	i
	j
�X	i��
	j
�A	i
�B	i



send X	end
	last�next
 to myId��

�

�

Figure 	 Pipelined ADI program with our system� The schedule is generated by our run�time analysis� It
supports operations getLastReceivePoint and getNextReceivePoint� which are used to determine what
points should be received� They allow for a nonuniform block size�

block� We then look for a �di�erent� block to subdivide� When no blocks need to be subdivided�
we are done� We found this simple heuristic to perform well in practice�

����� Eliminating Excess Messages

The third step improves upon the �rst step without modifying the regions that were subdivided
in the second step� We do this by eliminating excess messages� In the example above we use
�ne�grain pipelining on the parts of the matrix with signi�cant computation� similarly� we want to
use coarse�grain pipelining on the parts of the matrix where there is little work� To realize this�
we re�run the original �global� algorithm on consecutive groups of blocks that were not subdivided�
This eliminates unnecessary messages when part of the matrix contains very little work� but the
initial global block size was relatively small due to signi�cant work on a di�erent part of the matrix�

����� Distributing the Schedule

After the completed schedule has been determined by node �� it sends each node its schedule
before execution of the third iteration� For the rest of the computation� each node executes and
communicates according to this schedule� an outline of the code is shown in Figure 	� Note that
executing the �rst two iterations sequentially means that all the data resides on node � during that
time� data is also distributed to the nodes before the third iteration�

��� Integration with a Compiler

Although our analysis is currently stand�alone� it is designed so that it can be integrated with a
compiler that determines data dependencies and possibly transforms a sequential program to a
pipelined parallel one� This section discusses the basic implementation ideas�

First� to integrate our system with a compiler that transforms a sequential program to a
distributed�memory pipelined parallel one� such as PARADIGM ��	
� would be conceptually straight�
forward� The compiler subsystem that determines block size would be disabled� furthermore� in�

��



stead of generating code that used a static block size as in Figure �� code would be generated
to use the schedule generated by our system� shown in Figure 	� This would certainly require a
modi�cation of the code generator� Code would also need to be inserted to ��� sequentialize the
�rst two iterations� ��� obtain the times on those iterations in a similar way that our system� and
��� insert a call to invoke our analysis after the second iteration� While the implementation e�ort
for these items using a compiler like PARADIGM is unknown at this time� it appears possible�

Integrating our system with a shared�memory parallelizing compiler such as SUIF presents an
additional hurdle� This is because we require explicit message passing code� In this case we have
two options� First� the compiler could be retargeted to generate distributed�memory code� however�
this is an extremely time�consuming project� The other possibility is to integrate the compiler with
a distributed shared memory system� which several researchers have investigated in the context
of SUIF ���� ��
� Unfortunately� DSM systems are ill�equipped to handle pipelined programs� In
separate work we have added explicit support to DSM systems to support pipelining ���
� This
means that all the pieces necessary to integrate our analysis with SUIF exist� Still� the total
implementation e�ort involved to make such an integrated system work would be signi�cant and
surely more involved than retargeting a distributed�memory compiler�

� Performance

This section reports the performance of four programs� The �rst three are ADI integration� Hydro
�an implicit hydrodynamics kernel�� and Gauss�Seidel iteration� For each� an e�ective block size
might be able to be inferred statically� The fourth is an adaptation of an airshed simulation where
the workload is not uniform� it represents applications that need to use run�time information and
nonuniform block sizes to achieve good performance� Although the programs are relatively small
in size� they are indicative of larger programs �or may be called as subroutines in them��

For each application we developed a program that uses our run�time analysis� For an accurate
comparison� we also developed a program with a �parameterizable� static block size that does not
perform any run�time analysis� In addition� we implemented a separate sequential program� For
each application we present the results of the program with the best static block size and compare
it to the program that uses our run�time analysis� It is important to note that �nding the best
static block size requires experimenting with many block sizes for �� 
� and � nodes� whereas the
run�time version is run once for each set of nodes�

Below� we �rst discuss the overheads incurred by our run�time analysis� Next� we discuss
the accuracy of the predicted execution times of our model� Then� we brie�y describe the four
applications and present the results of runs on �� 
� and � nodes� along with ��� a comparison
between the best and worst static block size and ��� a measure of the time per iteration excluding
the �rst two �where monitoring occurs�� The sequential program times are also reported� we chose
problem sizes such that sequential programs took around ������ seconds	�

All tests were run on a network of � Pentium Pros connected by a ��� Mbs Fast Ethernet� using
Solaris and the cc compiler with the �O �ag� The execution times reported are the median of at
least three test runs� as reported by gethrtime� The tests were performed when the only other
active processes were daemons�

�Note that the longer the tests run� the better the programs using run�time analysis perform relative to the
programs that use a statically determined block size� This is because the overhead is amortized over more iterations�

�




Nodes � 
 �

ADI � � ��

Hydro 
 � ��

Gauss�Seidel � � �

Airshed � � ��

Table � Total overhead� to the nearest percent� of our run�time analysis on each of our applications�
This percentage is computed by determining how much longer the �rst two iterations take than with the
best statically chosen block size� Note that the larger the number of iterations� the smaller the overhead
percentage will be� We chose a moderate number of iterations ���� at most�� and the moderate overhead on
� nodes re	ects that�

��� Overhead of Run�Time Analysis

In general� we found the overheads of the run�time analysis in our system to be small� They consist
of the following quantities�

� executing the program sequentially on the �rst two iterations�

� taking measurements �gethrtime��

� estimating completion time for the �possibly nonuniform� block sizes�

� adding extra code to allow nonuniform block sizes according to the schedule� and

� choosing an ine�ective block size �when an e�ective size can be statically determined� due to
timing inaccuracies�

The most signi�cant overhead arises from executing the program sequentially on the �rst two
iterations� however� it is manageable as long as it is amortized over a reasonably large number
of iterations� However� sequential execution has a higher relative cost as the number of nodes
increases� It is important to note that executing the �rst two iterations in parallel has its own
overheads �for example� sending the times to node � can become a bottleneck for larger number of
nodes�� The time to take measurements involves � system calls per column� a call to gethrtime

takes about 
�� microseconds� so total timing overhead is on the order of milliseconds� The time
to choose the best block size increases with the number of nodes� but even on our eight�node tests�
it was small �a few tenths of a second�� The extra code to allow nonuniform block sizes �which
involves using the generated schedule to decide when to send and receive� is outside of the main
computation loops and so is negligible�

A potentially serious problem is choosing an ine�ective block size� In the tests we performed�
our run�time analysis did not always choose the global block size that was the best �see the ��node
Hydro test as well as Gauss�Seidel�� however� the one it did choose had performance that was
practically identical to the best block size� In general� though� it is possible to choose a poor block
size if wallclock timing is inaccurate due to the existence of other user processes� However� because
we are operating as the only user on the machine� this has not happened in our tests� Table �
shows the overall overhead percentage on �� 
� and � nodes for our applications� Note that we use
a moderate number of iterations� for a reasonably large number� the overhead would be very small�

��



2 Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ADI Hydro Gauss-
Seidel

Airshed

Program

S
e
c
o

n
d

s Best Static
RT w/ caching
RT w/o caching

4 Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

ADI Hydro Gauss-
Seidel

Airshed

Program

S
e
c
o

n
d

s Best Static
RT w/ caching
RT w/o caching

8 Nodes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ADI Hydro Gauss-
Seidel

Airshed

Program

S
e

c
o

n
d

s Best Static
RT w/ caching
RT w/o caching

Figure �
 Accuracy of the model on the four appplications for two� four� and eight nodes� respectively�
The time shown� in seconds� is the time for just the pipelining portion on a single iteration� �ADI and Airshed
have non�pipelining phases� so the total iteration time is greater than that shown here�� The run�time version
that incorporates caching is much more accurate than the one without�

��� Model Accuracy

It is important to inspect the accuracy of the predicted execution times of our model� Figure ��
shows the execution times of a single iteration for �� 
� and � nodes on each of our programs� Data
is shown for the best static block size and the estimation of the completion time using that block
size by our run�time model both with and without taking caching into consideration� �Only the
pipelined portion of the iteration is measured�� Clearly our model is much more accurate when
caching is taken into account� the estimated iteration times often are around double the actual
times� This is because the intra�node block times for block sizes of 
� �� � � � � n are overestimated�
what really are cache hits are modeled as memory accesses� Our model is usually within ��� of
the actual time per iteration� The �gure does not show how well the model performs on block
sizes other than the best� it is most inaccurate in estimating performance of a block size of �� The
di�erence in that case can be as much as ��� from actual� We tend to underpredict the actual
time in this case �and to a lesser extent with a block size of ��� this is most likely because the large
number of messages causes many interrupts on all but the �rst node� and our current model does
not take this into account�

��� ADI

ADI �Alternate Direction Implicit� integration is one way to implement numerical integration� It
can be parallelized exactly as shown in Figure ��

The execution times for two versions of ADI� size ���
� are shown in Table �� The program that
uses our run�time analysis �rst �nds a global block size of ��� then� interestingly� it subdivides only
the �rst block �due to the initial waiting time� into blocks of size 
� The best static block size on
�� 
� and � nodes was ��� As can be seen from Figure ��� on � nodes� the run�time version was in
fact slightly better than the static version on a per�iteration basis after the second iteration� This
appears to be because the waiting time is reduced by the subdivision of the �rst block� However on
� nodes� the run�time version performs slightly worse� there is less work� so the waiting time is not
as severe� The overhead of the �rst two iterations accounts for almost all of the di�erence between

��



Nodes Time ���
��� Blocksize ���
���

Run�Time �����
�������� �������� � �

Best Static �
������������ ��������

Sequential Time ���

Table � ADI integration� ����� ����� ��� iterations �times in seconds�� Run�Time refers to the program
that makes a run�time choice of block size� and Best Static refers to the best out of the static programs� The
��� indicates that a size of �� was chosen for all blocks except the �rst� which was subdivided into blocks of
� by our algorithm due to its waiting time�

Per-Iteration Times

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ADI Hydro Gauss-
Seidel

Airshed

Program

S
ta

tic
/D

yn
am

ic
 R

at
io

2 nodes
4 nodes
8 nodes

Figure �� Ratio of time per iteration of static version to run�time version for each application on two�
four� and eight nodes� A ratio greater than one indicates that the run�time version is superior�

the static and run�time version� Note also that a poor choice of block size can be detrimental� for
example� on � nodes� a static block size of � is �	� slower overall on each iteration than a block
size of �� �the best�� furthermore� the pipelining part of the computation is three times slower�
Figure �� indicates this disparity in performance� Finally� because the workload is uniform in
ADI� an e�ective block size might be able to be chosen statically� Still� our run�time analysis can
sometimes produce a slightly better one� even though this is a program for which static analysis is
possible�

��� Hydro

Hydro is kernel number �� from the Livermore Loops �	
� it is an excerpt from an implicit hydro�
dynamics code� It consists of a prespeci�ed number of iterations� where each updates every point
on a two�dimensional matrix� Because each update is based on a four point stencil on the same
matrix� there is a data dependence that prevents full parallelization of the loop�

The execution times for two versions of Hydro are shown in Table �� The run�time version
�rst �nds a global block size of ��� as with ADI� it then subdivides only the �rst block� However�
although this improves the per�iteration time� the improvement is extremely small because the
work per iteration of Hydro is much less than that of ADI� The per�iteration times found by our
analysis are virtually identical or just slightly better than their static counterparts �see Figure ����

��



Effect of Poor Block Size Choice

0

1

2

3

4

5

6

7

8

ADI Hydro Gauss-
Seidel

Airshed

Program
W

or
st

/B
es

t R
at

io

2 nodes
4 nodes
8 nodes

Figure �� Ratio of worst static block size to best static block size for each application on two� four� and
eight nodes� The worst block size was � for each application except airshed� where it was ���� �A block size
of ���� was not considered because that sequentializes program execution��

Nodes Time ���
��� Blocksize ���
���

Run�Time 
	������������ �������� � �

Best Static 
������������	 �
������

Sequential Time ����

Table � Hydro kernel� ���� � ����� ��� iterations �times in seconds�� Run�Time refers to the program
that makes a run�time choice of block size� and Best Static refers to the best out of the static programs� The
��� indicates that a size of �� was chosen for all blocks except the �rst� which was subdivided into blocks of
size � by our algorithm due to its waiting time�

As with ADI� the overhead of the �rst two iterations causes the run�time version to be slower than
the static version� on � nodes the overhead is ������ The best static block size for Hydro was �
 on
two nodes and �� on four and eight nodes� �On two nodes� performance was nearly identical with
block sizes of �� and �
�� A poor choice of block size has a similar e�ect as that seen with ADI�

��� Gauss�Seidel

Laplace�s equation in two dimensions is the partial di�erential equation���!� � �� Given boundary
values for a region� its solution is the steady�state values of interior points� These values can be
approximated numerically by using a �nite di�erence method such as Gauss�Seidel iteration� which
repeatedly computes new values for each point for a speci�ed number of iterations ��
� Our program
uses an eight point stencil�

Gauss�Seidel iteration is e�cient compared to explicit iterative techniques such as Jacobi iter�
ation� but hard to parallelize because the computation of each point depends on both old and new
values in the array� This prevents parallelization with communication only on the boundaries of
each node�s subarrays� A �wavefront� parallelization method may be used� because parallelism is
possible on each diagonal� Another way to solve it is to use pipelining� which is the method we
employ� Computation proceeds sequentially within a block� which preserves the dependencies in

��



Nodes Time ���
��� Blocksize ���
���

Run�Time �	�	�
�������� �������� � �

Best Static �������������	 ��������

Sequential Time ��	

Table � Gauss�Seidel� ���������� ��� iterations �times in seconds�� Run�Time refers to the program that
makes a run�time choice of block size� and Best Static refers to the best out of the static programs� The ���
indicates that a size of �� was chosen for all blocks except the �rst� which was subdivided into blocks of size
� by our algorithm due to its waiting time�

the application�
The results of our Gauss�Seidel experiments are shown in Table 
� One notable di�erence

between these tests and the Hydro tests are that the run�time version found a smaller block size
����� although the time is only slightly worse than with a size of ��� It also subdivided the �rst
block� however� the time per iteration is inferior to the program with the best static block size�
as can be seen from Figure ��� We believe that this is due to slight timer variations caused by
the very �ne�grain nature of this program� Also� the �ne granularity causes the extremely poor
performance of the worst static block size� which was �� almost of all of the time is spent sending
and receiving messages�

��� Airshed Simulation

Our fourth test program is an airshed simulation� which models the formation� reaction and trans�
port of atmospheric pollutants and related chemical species
� Our benchmark program is adapted
from the tpsuite from Carnegie Mellon ���
� Our version performs only the main computational
loop of the calculation� which consists of a transport calculation� followed a chemistry phase� fol�
lowed by another transport calculation� For our purposes� the important computational aspect
of the transport calculation is to perform a row�wise �across the �rst dimension� update to every
element of a three�dimensional array� The chemistry phase also updates the array� but in a column�
wise manner� making pipelining a reasonable way to parallelize this program� The chemistry phase
has an unbalanced workload� making run�time analysis especially important for this program� This
program represents less regular applications� where the workload is nonuniform�

The execution times for two versions of the airshed simulation are shown in Table �� The
work was clustered at the right end of the matrix� so an e�ective composition of blocks is to use
larger blocks �size ��� that encompass the part of the matrix that has little work and then �ne�
grain pipelining �block size of �� in the part where there is signi�cant work� The program using
our run�time analysis found this block size by �nding an initial static block size of 
 �step � of our
algorithm�� subdividing the right part of the schedule� on which a block size of � was obtained �step
� of our algorithm�� and eliminating excess messages from the rest of the schedule� on which a block
size of �� was obtained �step � of our algorithm�� The best static block size in our experiments was
�� this is a compromise�it avoids the severe message overhead of �ne�grain pipelining where there
is little work and severe load imbalance where there is signi�cant work� Still� the static program
incurs more overhead than necessary on all parts of the matrix� which accounts for the superiority

�The general airshed program allows both task and data parallelism� we only exploit data parallelism�

�	



Nodes Time ���
��� Blocksize ���
���

Run�Time �����
�������	 f����g�f����g�f����g

Best Static ���
���������� �����

Sequential Time ���

Table � Airshed simulation� ����� ���� � �� ��� iterations �times in seconds�� Run�Time refers to the
program that makes a run�time choice of block size� It uses a block size of � on the �rst ���� columns and a
block size of � ��ne�grain pipelining� on the last ��� Best Static refers to the best out of the static programs�

of the run�time version� This can be seen from Figure �� on a per�iteration basis� The disparity in
this application is enough that the run�time version is superior even given the overhead of the �rst
two iterations� overall� it is ��� ���� and ��� faster on two� four� and eight nodes� respectively�

� Summary

We have presented a run�time approach to selecting block sizes in pipelined parallel programs� This
allows us to choose an e�ective block size even when a source program is not amenable to static
analysis� Furthermore� our system allows the choice of block size to be nonuniform� which allows
increased �exibility� Our analysis monitors the program for two iterations� builds an execution
model that includes the e�ect of caching� and takes a three�step procedure to �nd an e�ective block
size� choose an initial block size� subdivide blocks that incur a large waiting penalty� and then
eliminate excess messages�

We implemented our system on a cluster of � Pentium Pros� The programs that made use
of run�time information to select block sizes had faster execution times than those that make a
static choice when the workload is unbalanced� For programs that are amenable to static analysis�
the programs that use our system are competitive� Our run�time system provides a potentially
attractive target for a parallelizing compiler� in particular� a sequential program need only be
translated to a pipelined parallel program� No workload analysis needs to be done to �nd an
e�ective block size� We believe that our system is a viable way to e�ciently execute a larger class
of pipelined programs than previously possible�

Future Work

We intend to continue work on using run�time analysis to choose block sizes in pipelined parallel
programs� there are many avenues that can still be explored� These include integrating interrupts
into our model� investigating better �graph�theoretic� algorithms to choose the block size� and
implementing e�cient pipelining in distributed shared memory systems�

Including interrupts into the model �as in ���
� will be a challenge� It means that new recur�
rences will need to be developed� the work in ���
 does not represent the problem with a discrete
formulation as we do� How the new formulation will interact with our analysis to select block sizes
is unknown�

Although our heuristic worked well� we are looking at �nding even better algorithms to choose
block sizes as well as allowing a larger search space� We have discussed formulating the problem
using an acyclic directed graph and �nding the longest path� which would then represent the

��



completion time� The goal is then to improve this path� We would also like to determine how far
our solution is from optimal�

� Acknowledgements

John Kececioglu provided us with invaluable assistance on all aspects of this work�

References

��
 HPF"� scope of activities and motivating applications� November �		
�

��
 D�B� Loveman� Program improvement by source�to�source transformation� Journal of the

ACM� �
������	"���� January �	���

��
 J�R� Allen and K� Kennedy� Automatic translation of Fortran programs to vector form�
TOPLAS� 	�
��
	�"�
�� October �	���

�

 David Padua and Michael Wolfe� Advanced compiler optimizations for supercomputers� Com�
munications of the ACM� �	��������
"����� �� �	���

��
 A�R� Hurson� J�T� Lim� and B� Lee� Extended staggered scheme� a loop allocation policy� In
World IMACS Conference� pages ����"����� �		
�

��
 Chau�Wen Tseng� An Optimizing Fortran D Compiler for MIMD Distributed�Memory Ma�

chines� PhD thesis� Rice University� January �		��

��
 Ding�Kai Chen and Pen�Chung Yew� On e�ective execution of nonuniform DOACROSS loops�
IEEE Transactions on Parallel and distributed systems� �����
��"
��� May �		��

��
 Gregory R� Andrews� Foundations of Multithreaded� Parallel� and Distributed Programming�
Addison�Wesley� �����

�	
 F� McMahon� The Livermore Fortran Kernels� A computer test of the numerical performance
range� Technical Report UCRL����
�� Lawrence Livermore National Laboratory� �	���

���
 Ken Kennedy� Compiling a software bridge to the ��st century�invited talk at PPOPP 	��
June �		��

���
 Robert F� Cmelik and David Keppel� A fast instruction�set simulator for execution pro�ling�
TR SMLI 	����� Sun Microsystems Labs� �		��

���
 V�P� Krothapalli and P� Sadayappan� Dynamic scheduling of DOACROSS loops for multi�
processors� In Proceedings of Parbase���� International Conference on Databases and Parallel

Architectures� pages ��"��� �		��

���
 Daryl Olander and Robert B� Schnabel� Preliminary experience in developing a parallel thin�
layer navier stokes code and implications for parallel language design� In Proceedings of the

���� Scalable High Performance Computing Conference� �		��

��

 G� McRae� W� Goodin� and J� Seinfeld� Development of a second�generation model for urban
air polution � �� model formulation� Atmospheric Environment� ���
����	"�	�� �	���

��



���
 A�R� Hurson� Joford T� Lim� Krishna M� Kavi� and Ben Lee� Parallelization of DOALL and

DOACROSS Loops � A Survey� volume 
�� pages ��"���� Academic Press Ltd�� �		��

���
 William Blume� Ramon Doallo� Rudolf Eigenmann� John Grout� Jay Hoe�inger� Thomas
Lawrence� Jaejin Lee� David Padua� Yunheung Paek� Bill Pottenger� Lawrence Rauchwerger�
and Peng Tu� Parallel programming with Polaris� IEEE Computer� �	�������"��� December
�		��

���
 Mary W� Hall� Jennifer M� Anderson� Saman P� Amarasinghe� Brian R� Murphy� Shih�Wei
Liao� Edouard Bugnion� and Monica S� Lam� Maximizing multiprocessor performance with
the SUIF compiler� IEEE Computer� �	������
"�	� December �		��

���
 H�P� Zima� H�J� Bast� and M� Gerndt� SUPERB� A tool for semi�automatic MIMD�SIMD
parallelization� Parallel Computing� ������"��� January �	���

��	
 P� Banerjee� J�A� Chandy� M� Gupta� E�W� Hodges IV� J�G� Holm� A� Lain� D�J� Palermo�
S� Ramaswamy� and E� Su� The PARADIGM compiler for distributed�memory multicomputers�
IEEE Computer� ���������"
�� October �		��

���
 A�R� Hurson� J�T� Lim� K� Kavi� and B� Shirazi� Loop allocation scheme for multithreaded
data�ow computers� In Proceedings of the 	th International Parallel Processing Symposium�
pages ���"���� �		
�

���
 Joel H� Saltz� Ravi Mirchandaney� and Kay Crowley� Run�time parallelization and scheduling
of loops� IEEE Transactions on Computers� 
��������"���� May �		��

���
 Peiyi Tang and John N� Zigman� Reducing data communication overhead for doacross loop
nests� In Proceedings of the ���
 ACM International Conference on Supercomputing� pages


"��� �		
�

���
 V�P� Krothapalli� J� Thulasiraman� and M� Giesbrecht� Run�time parallelization of irregular
DOACROSS loops� In Proceedings of Irregular ���� pages ��"��� �		��

��

 V� Balasundaram� G� Fox� K� Kennedy� and U� Kremer� An static performance estimator to
guide data partitioning decisions� In Proceedings of the Third ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming� pages ���"���� April �		��

���
 David K� Lowenthal and Michael James� Run�time selection of block size in pipelined parallel
programs� In Proceedings of the �nd Merged IPPS
SPDP� pages ��"��� April �			�

���
 David Sundaram�Stukel and Mary K� Vernon� Predictive analysis of a wavefront application
using LogGP� In Proceedings of the Seventh ACM Symposium on Principles and Practice of
Parallel Programming� pages �
�"���� May �			�

���
 Stephanie Coleman and Kathryn S� McKinley� Tile size selection using cache organization and
data layout� In SIGPLAN ���� Conference on Programming Language Design and Implemen�

tation� �		��

���
 Rob F� Van der Wijngaart� Sekhar R� Sarukkai� and Pankaj Mehra� The e�ect of interrupts
on software pipeline execution on message�passing architectures� In Proceedings of ACM Int�l�

Conference on Supercomputing� May �		��

��



��	
 D�J� Palermo� E� Su� J�A� Chandy� and P� Banerjee� Compiler optimizations for distributed
memory multicomputers used in the PARADIGM compiler� In Proceedings of the ��rd Inter�
national Conference on Parallel Processing� pages II��"��� August �		
�

���
 Pete Keleher and Chau�Wen Tseng� Enhancing software DSM for compiler�parallelized appli�
cations� In Proceedings of the ��th International Parallel Processing Symposium� April �		��

���
 Honghui Lu� Alan L� Cox� Sandhya Dwarkadas� Ramakrishnan Rajamony� and Willy
Zwaenepoel� Compiler and distributed shared memory support for irregular applications� In
Sixth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming� pages

�"��� June �		��

���
 Karthikeyan Balasubramanian and David K� Lowenthal� E�cient support for pipelining in dis�
tributed shared memory systems �submitted to Parallel and Distributed Computing Practices��
August �			�

���
 Peter Dinda� Thomas Gross� David O�Hallaron� Edward Segall� James Stichnoth� Jaspal
Subhlok� Jon Webb� and Bwolen Yang� The CMU task parallel program suite� Technical
Report CMU�CS�	
����� School of Computer Science� Carnegie Mellon University� March
�		
�

��


