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Abstract

Programming distributed-memory machines requires
careful placement of datato balancethe computational load
among the nodes and minimize excess data movement be-
tween the nodes. Most current approaches to data place-
ment require the programmer or compiler to place data
initially and then possibly to move it explicitly during a
computation. This paper describes a new, adaptive ap-
proach. Itisimplemented in the Adapt system, which takes
an initial data placement, efficiently monitors how well it
performs, and changes the placement whenever the moni-
toring indicates that a different placement would perform
better. Adapt frees the programmer from having to spec-
ify data placements, and it can use run-time information to
find better placementsthan compilers. Moreover, Adapt au-
tomatically supports a “ variable block” placement, which
is especially useful for applications with nearest-neighbor
communication but an imbalanced workload. For applica-
tions in which the best data placement varies dynamically,
using Adapt can lead to better performance than using any
statically determined data placement.

1. Introduction

to make such decisions. Most current approaches determine
data placements statically. They can generally be divided
into two categories: using language primitives, such as the
ones in HPF [9], or compiler analysis, such as the work re-
portedin [1], [5], and [12]. Language primitives involve the
programmer in the choice of data placement; unfortunately,
the best placement may be difficult or impossible for the
programmer to determine. Compiler analysis also may not
be able to infer the best data placement.

This paper describes a completely dynamic approach to
data placement. Our approach has been implemented in
a prototype system called Adapt, which has the following
attributes:

¢ Given some initial data placement, Adapt monitors
the effect of the placement (with low overhead) and
changes itto a better one if needed.

¢ Neither the programmer nor the compiler need be
involved in the selection of the initial or new data
placements.

¢ Adapt supports new data placements, those with vari-
able sized blocks, that to our knowledge are not sup-
ported by current languages or compilers.

¢ Programs written using Adapt will run efficiently on

Distributed-memory machines—including parallel com-
puters and workstation clusters—are used to achieve scal-
able high performance computing. Programming these ma-
chines requires specifying both what can execute concur- Adapt is given (or chooses) some initial data placement
rently and when and how processes communicate. Thesand then monitors computation time and communication
two problems are largely independent. We assume that prooverhead and computes delays on each node to determine
cesses have already been specified—either by the progranif a different placement would lead to a shorter completion
mer or by a compiler—and we consider the problems of how time for the overall computation. When it finds a better
data is placed initiallyin the memories of the processors andplacement, it changes to this new placement. Adapt con-
how data moves during a computation. tinues to monitor the program, and if the characteristics of

The goal of this work is to determine data placements dy- the application change, it changes the placement again. The
namically rather than requiring programmers or compilers ability to change placements during execution is especially

machines and networks with varying ratios of proces-
sor speed to network speed.



important for problems—such as particle-in-cell codes [6]— multaneously balancing computational load and minimiz-
for which the best data placement can vary over the courséng communication often conflict, as there is an interaction
of the application [17]. between the two. For example, one placement extreme is

Adapt is currently implemented on a cluster of Sparc-1s to put all data elements on one node; this will minimize
and supports iterative scientific applications, which com- communication (there is none), but it also maximizes load
prise a large subset of computational science applicationsimbalance (all other nodes are idle), which leads to large
Performance on a network of workstations is such that Adaptdelays at synchronization points. The other extreme is to
can outperform programs that use any statically determinedassign elements randomly to nodes; this will (probabilisti-
data placement on applications in which the benefit of dy- cally) balance the load, but the lack of spatial locality will
namically redistributing the data outweighs the overhead of most likely lead to a large amount of communication.
redistribution. The Adapt version of a particle simulation Between these extremes are several feasible data place-
ran over 10% faster than the program with the best staticallyments. Adapt considers two—variable block and striped.
determined placement when the particles tended to clusterA variable block placement allocates a contiguous set of
Even when good placements can be statically determinedapproximately the same number of data elements on each
Adaptis competitive; e.g., Adapt versions of Jacobi iteration node. In applications such as Jacobi iteration, the block
and LU decomposition are only slightly slower than the best sizes are equal, because each matrix cell contains a data
static counterparts, ranging from a best case of 1% slowerelement, the workload is balanced, and the communication
to a worst case of 13% slower. is regular (this placement is call&LOCK in HPF). On the

The remainder of the paper is organized as follows. Sec-other hand, particle-in-cell codes [6] often require unequal
tion 2 describes the data placement problem and the range dblock sizes, because matrix cells can contain any number of
possible placements. Section 3 gives an overview of Adaptdata elements (HPF has no equivalent placement).
and its implementation, and Section 4 presents performance A striped placement method allocates data elements
results. Finally, Section 5 describes related work and makescyclically to the nodes (calle€YCLI C in HPF). Striped

a few concluding remarks. placements can handle problems with changing workloads
well, because if the amount of work per element decreases
2. Framework for Data Placement within the computation, a striped placement balances the

load without a need for remapping. However, striped place-
ments have fairly poor spatial locality, so they are typically

Ar\ da:tampltact(;memnt :‘51 a;imap][c:)[[r;lg Onf tggsdag?hglrzr?:r:gr:'euseful only when the amount of communication in an appli-
a program 1o In€ memories ot the nodes. T cation is (relatively) independent of the data placement. LU
initial placement when a program begins execution; it can

itionii le of licati itha chang-
be changed, oped, in the middle of execution. The decompositionis an example of an application with a chang

: s .~ ingworkload and a placement-independent communication
ideal data placement minimizes the overall completion time

o . attern.
of an application. Because all nodes cooperate in order top

complete an application, the completion time of the slowest ) .
node determines the completion time of the application.  3- Adapt and itsImplementation

Three factors affect the completion time of a node: com-
putation time, communication overhead, and delay. Com- The current Adapt prototype is implemented in concert
putation time is the time spent executing application code, with the Distributed Filaments (DF) software kernel [4],
communication overhead is time spent executing low-level which uses a DSM for communication. The Adapt system
code that copies messages to and from the network, andlynamically selects one of the data placements described in
delay is time spent waiting for other nodes to complete Section 2. It is given some initial data placement by the
their computation or respond to a message. The key for aprogrammer or compiler (the current defaulBlsOCK) and
good data placement is balancing the computation betweerthen employs three steps to determine whether this place-
the nodes—to minimize synchronization delay—while also ment is a good one or whether it should be changed. First,
minimizing the number of messages—to minimize commu- Adapt gathers information about the communication pattern
nication overhead and message delay. and computation time for each loop body in the applica-

We assume that any node can reference any data elgion. Next, it uses this information to determine which
ment. We also assume tlogmner-computes rule [8]. This data placement is likely to minimize both communication
means each data element has an “owner”, which is the onlyoverhead and delay. Finally, it effects the new placement (if
node that updates the element; however, other nodes mayecessary) and continues to monitorthe computation in case
reference the element. the amount of computation or communication later changes.

The elements of a data structure can be placed on théBelow we discuss how Adapt monitors the computation, de-
nodes in numerous ways. However, the challenges of si-termines a placement, and changes the placement.



3.1. Adapt Monitoring pattern is broadcast, the type of packing depends on the
workload. If the history of loop execution times shows a
Adapt gathers information about the communication and constant workload, the same procedure as the one above is
computation in each loop body. Adapt monitors communi- used. On the other hand, if the execution times are chang-
cation using DSM page faults and the DSM page table. Ining, Adapt uses /P bins on each node to effectGYCLI C
particular, the system counts the number of messages thaityle placement.
each node sends and receives during one iteration of the
application program. From these counts—and architecture-3.3. Changing the Data Placement
specific measures of the times it takes to send pages between
nodes and to service page requests—Adapt estimates the Once a new data placement has been chosen, Adapt
time due to communication overhead and message delay oghanges the data placement by reparameterizing the code
each node. so that each node accesses different data. When a node
Adapt determines the communication pattern by inspect-accesses data it does not own, page faults result; the under-
ing the pattern of page faults on arrays in the page table.lying DSM then implicitly moves the data. The Filaments
Currently, Adapt recognizes two pattermegarest-neighbor package provides a simple and efficient mechanism for gen-
andbroadcast. Inthe nearest-neighbor pattern, nédeeds  erating a new code parameterization (see [4] for details);
to communicate values with nodés+ 1 and: — 1. This however, any generation method will do.
pattern occurs on an array when (1) each node has a distinct After a placement has been changed, Adapt continues
subset of exclusive-access pages of the array and (2) neighio monitor the application to detect when a different place-
boring nodes have read access to consecutive sets of pag@&ent might be better. (This can happen when characteristics
of the array, with each node owning one set. change during execution, as described in Section 4). Alarge
A broadcast pattern means that one node writes a valueyariance in the computation times suggests an imbalanced
there is a barrier synchronization point, and then all nodesload, which might require a placement that better balances
read the value. Adapt detects a broadcast pattern on athe load. Anincrease in the communication times suggests
array if there are a pair of loops that exhibit the following €xcess communication, which might require a placement
characteristics: (1) in the first loop one node writes to a with more locality. If either is detected, Adapt notifies the
subset of pages of the array, (2) in the second loop eachhodes before the start of the next iteration. All nodes then
node has a distinct subset of exclusive-access pages of thee-enable the monitoring phase and repeat the algorithm de-
array, and (3) in the second loop all nodes read the subset ocribed above to determine the new (if any) best placement.
pages that were written in the first loop.
Adapt gathers information about computation time by 4. Performance
instrumenting the application code to obtain the time each

node spends accessing the data elements it owns. These Thjs section reports the performance of Adapt on three
times are combined at the next barrier synchronization pointprograms: Jacobi iteration, LU decomposition, and parti-

to obtain the total computation time. cle simulation. Jacobi iteration and LU decomposition are
_ examples of applications in for which it is possible to deter-
3.2. Adapt Algorithm mine a good data placement statically. Particle simulation,

on the other hand, requires run-time support both to deter-

After gathering communication and computation infor- mine agood placement and possibly to change the placement
mation for one iteration of an application, Adapt uses it during the computation.
to choose a good data placement. In particular, given the For each application we developed a program using
total computation tim&” and the number of nodeB, the ~ Adapt. For an accurate comparison, we also developed
ratio7'/ P represents the amount of computation each nodea Distributed Filaments (DF) [4] program without the Adapt
should perform for a perfectly balanced load. Adapt exam- subsystem. (Sequential programs were virtually identical to
ines different ways that rows could be mapped to nodes tothe one-node DF programs.) Below, we briefly describe the
achieve this ideal load. This is done using a simple bin- three applications and present the results of runson 1, 2, 4,
packing procedure, which in turn depends on the communi-and 8 Sparc-1 nodes connected by an Ethernet.
cation pattern detected during the monitoring phase. When
the communication pattern is nearest-neighbor, Adapt packs4.1. Jacobi Iteration
the bins so that each bin contaensecutive rows and the
estimated total time on the node is as close as possible to Jacobi iteration is an example of an application that has
T/P. Adapt also investigates multiple-bin packings if the a nearest-neighbor communication pattern and a load that
load is not sufficiently balanced. When the communication is perfectly balanced. In particular, each node needs to



| NumberofNodes || 1 | 2 | 4 | 8 | | NumberofNodes [ 1 | 2 | 4 | 8 |

Adapt Time (sec) 189 | 104 | 55.2| 32.0 Adapt Time (sec) 69.4| 40.1| 29.8| 235
DF Time,BLOCK (sec)|| 188 | 104 | 54.6| 30.4 DF Time,BLOCK (sec) 69.1| 47.5| 384| 324
DF Time,BC( n/2P) (sec)|| 69.1| 47.0| 39.1| 25.3

Figure 1. Jacobi iteration, 512 x 512, ¢ = 1073 DF Time,BC(n/4P) (sec)| 69.1| 48.5| 34.2| 26.2
DF Time,BC( n/8P) (sec)|| 69.1| 46.5| 39.3| 42.6

| Number of Nodes 1] 2] 4] 8]
Adapt Time BLOCK) (sec) || 547 | 322 | 210 | 185
Adapt Time CYCLI C) (sec) || 547 | 305 | 190 | 165

DF Time,CYCLI C(sec) || 544 | 303 | 189 | 164

Figure 3. Particle simulation, grid 64 x 64, 150
particles. (BCis short for the Fortran D style
BLOCKCYCLI C)

Figure 2. LU decomposition, 800 x 800. .
program is the cost of the extra page faults necessary to

change the data placement at run time and the overhead of
communicate only with its neighbors to exchange edges, initially using a variable block placement. In the Adapt
and the same amount of computation is performed on eacHSYCLI C program, these overheads are not present and the
point of the matrix on each iteration. Hence, the best dataperformance is very close to the DF program.
placement for this application BLOCK, as all placements
with less locality incur more communication with no load- 4.3. Particle Simulation
balancing benefit.

The execution times for the two versions of Jacobi itera- ~ Our particle simulation program models the behavior of
tion are shown in Figure 1. The Adapt programiinitiallyuses MP3D [15]. We use a two-dimensional grid of space cells
BLOCK by default; after recognizing nearest-neighbor com- and parameterize the movement of particles to facilitate ex-
munication, Adapt runs the bin-packing algorithm, which Perimentation. Although our implementation simplifies the
approximately reproduces ti: OCK placement. The dif- physics involved, the computational structure is the same as
ference between this program and the DF program that use1P3D.

BLOCK is small because the placement Adapt chooses is  This application is representative of programs where a
virtually identical to the initial placement, so remapping 90od data placement depends on information that is avail-
consumes very little (if any) time. able only at runtime and different placements might be better
at different time steps of the computation. The amount of
computation at each grid cell depends on how many particles
are in that cell, and the initial distribution of the particles is
read in at run time. Thus, static analysis cannot in general
determine a good data placement. Furthermore, if particles

which the load is not balanced. After a row is pivoted, itis q,ster in certain regions of the grid, the data placement may
never accessed again; on iteratipponly an ¢ — ¢ + 1) by need to change to re-balance the load.

(n — i+ 1) submatrix is accessed. The workload decreases |, our experiement, the application tended to move the

by one row on egch iteration. .On ef?\ch llteratllon, every nOdeparticIes to the upper region of the gticFigure 3 shows the
must read the pivot row (row), which is written by the = oy ecytion times for this program. The Adapt version per-
owner of rowi. Communication is constant over all data 5 mg the bestin this case, because when more particles clus-
plgceme.nts.' qu these reasons, the best data placement fQr. oo+ the top, Adapt remaps the space array to balance the
this appllcatlop 'SCYCLI C " _number of particles (for this particular program Adapt per-

_ The execution times for LU decomposition are shownin tormed three remappings). We tested several DF programs
Figure 2. The first program, AdapLOCK,; initially uses @ yith different data placements; using larger block sizes ex-

block placement. Near the beginning of the computation, gcerhates the load imbalance, and using smaller block sizes
the work is evenly balanced, as most rows are still active. c5,,ses excess communication.

Thus, after recognizing a broadcast communication pattern,
Adapt uses a variable block placement. However, the sys-5
tem quickly detects an imbalanced load, re-enabling the
monitoring phase. At this point Adapt detects a decreasing .
workload and changes to a striped placement. The second. Data placgment can be supported by Iangu.age-level prim-
program, AdapCYCLI G, initially uses a cyclic placement itives, compilers, or (less commonly) run-time systems.
The difference between AdaBt. OCK and the DFCYCLI C 1 This clustering is not contrived: it can occur in practice [6].

4.2. LU Decomposition

LU decomposition is an example of an application in

. Related Wor k and Conclusion




With language primitives, the programmer annotates each
array with a placement (e.g. [9, 7, 18, 21, 3]). The advan-

tage of using language primitives is that the programmer [
has full control over the program. However, the program-

mer might not know the best placement; even so, the best

placement might change when executing the program on a [6]
new architecture.

With a compiler-based approach, the compiler infers a

placement for each array in the source code by inspecting [7]
loops and array accesses (e.g. [1, 12, 5, 2, 10, 14, 13, 19)).

Hence, the programmer need not be involved in placing
data. However, a compiler may not be able to infer the best

placement, especially for a dynamic computation.
With a run-time system approach, such as Adapt, ALEXI
[20], and CHAOS [11], data-placement decisions are made[10]

during execution. This approach can produce good place-
ments for a larger class of applications because of the in-
creased information available at run time, but it incurs addi-

Systems Design and Implementation, pages 201-212, Nov.
1994.

M. Gupta and P. Banerjee. PARADIGM: A compiler for au-
tomated data distribution on multicomputersPhoceedings

of the 1993 ACM Inter national Conferenceon Supercompui-

ing, pages 357-367, July 1993.

F. H. Harlow. The particle-in-cell computing method for fluid
dynamics. In B. Alder, editorMethods in Computational
Physics, pages 319-343. Academic Press, Inc., June 1964.
S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and
C.-W. Tseng. An overview of the Fortran-D programming
system. Report TR91121, CRPC, Mar. 1991.

[8] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling For-

[9]

tional overhead to do so. Other methods to remap data at run
time have been studied [16], but involve user intervention.
We have presented an approach to data placement that

allows the placement to adapt to the needs of the application.
Adapt supports a larger class of problems than compiler

tran D for MIMD distributed-memory machine€ommuni-
cations of the ACM, 35(8):66—80, Aug. 1992.

High Performance Fortran language specification. Oct. 1993.
D. E. Hudak and S. G. Abraham. Compiler techniques for
data partitioning of sequentially iterated parallel loops. In
Proceedings 1990 International Conference on Supercom-
puting, ACM SIGARCH Computer ArchitectureNews, pages
187-200, Sept. 1990.

] Y. Hwang, B. Moon, S. D. Sharma, R. Ponnusamy, R. Das,

approaches and it requires no help from the programmer in[12]

determining a data placement. The performance of Adaptis
very reasonable on applications for which a good placement
can be statically determined by the programmer or compiler. [1
More importantly, the performance of Adapt can be superior
to any static scheme for problems that are impossible to

analyze at compile time or require run-time support.
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